
Depth-Dependent Halos: Illustrative Rendering of Dense Line Data

Maarten H. Everts, Henk Bekker, Jos B.T.M. Roerdink, Senior Member, IEEE, and Tobias Isenberg, Member, IEEE

Abstract—We present a technique for the illustrative rendering of 3D line data at interactive frame rates. We create depth-dependent
halos around lines to emphasize tight line bundles while less structured lines are de-emphasized. Moreover, the depth-dependent
halos combined with depth cueing via line width attenuation increase depth perception, extending techniques from sparse line ren-
dering to the illustrative visualization of dense line data. We demonstrate how the technique can be used, in particular, for illustrating
DTI fiber tracts but also show examples from gas and fluid flow simulations and mathematics as well as describe how the technique
extends to point data. We report on an informal evaluation of the illustrative DTI fiber tract visualizations with domain experts in
neurosurgery and tractography who commented positively about the results and suggested a number of directions for future work.

Index Terms—Illustrative rendering and visualization, NPR, dense line data, DTI, black-and-white rendering, GPU technique.

1 INTRODUCTION

Illustrative depictions have been playing an essential role in the com-
munication of knowledge for centuries. Traditionally, illustrators used
graphic tools such as pen-and-ink to draw—with the goal to depict,
e. g., the shapes of objects. The choice of tool was typically dictated
by the means of reproduction, usually the printing in books. There-
fore, illustrators often chose techniques that result in black-and-white
imagery, for example pen-and-ink, woodcuts, or copper plates. De-
spite being limited to two “colors,” these techniques still allowed illus-
trators to convey shape, material, and illumination through techniques
such as stippling, hatching, or cross-hatching. More importantly, il-
lustrators also made use of the fundamental illustration principles of
abstraction and emphasis to effectively communicate their intentions.

With the advance of computer support, illustrators started to use
general purpose graphics programs (e. g., Adobe’s Illustrator™ or Pho-
toshop™) for creating illustrations. One reason for this tool change is
that general purpose programs, in many aspects, provide more free-
dom than traditional tools. In a separate development, the visualiza-
tion community has created numerous successful techniques to solve
specialized visualization problems, e. g., in the medical domain. In
both cases, the availability of color processing and reproduction has in-
vited the use of shading techniques, i. e., representing surfaces through
shades of color, in contrast to the traditional black-and-white methods.

While illustrators in their use of general purpose tools can still ap-
ply the illustration principles of abstraction and emphasis, this is more
difficult for automatic techniques as it is challenging to “teach” im-
portance to an algorithm. In the areas of non-photorealistic rendering
(NPR) and illustrative visualization, however, abstraction and empha-
sis techniques have been investigated. Examples include the use of
halos for simple line rendering [2, 11] or shading [22, 37] and volume
rendering [5], the use of additional depth cueing by influencing line or
shading parameters (e. g., [11]), interactive emphasis techniques (e. g.,
[27, 35, 41]), or focus+context techniques (e. g., [13, 39]).

In this paper we build on these previous approaches but focus on a
specific subset of data—line datasets (see the example result in Fig. 1).
This type of data is generated in a number of application domains
such as medical imaging (e. g., DTI fiber tract extraction), meteorol-
ogy (e. g., particle traces in storm data or simulations), physics (e. g.,
particle tracts from 3D gas or fluid flow simulations), or astronomy
(e. g., particle traces from mass distribution simulations for galaxy for-
mation). In all these application areas, line data with a comparably
high density of elements is generated and needs to be analyzed. This

• All authors are with the University of Groningen, the Netherlands; e-mail:
{m.h.everts |h.bekker | j.b.t.m.roerdink}@rug.nl, isenberg@cs.rug.nl.

Manuscript received 31 March 2009; accepted 27 July 2009; posted online
11 October 2009; mailed on 5 October 2009.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org .

data lends itself more to the traditional black-and-white depiction tech-
niques rather than shading-based methods because lines occupy much
less space than shaded elements such as cylindrical shapes. In addi-
tion, detail in the visualizations is often important so that reducing the
number of depicted lines may not be a suitable approach.

To address this problem of depicting dense line datasets in their full
detail our paper makes the following contributions: We show how to
illustratively visualize dense line datasets at interactive frame-rates us-
ing modern graphics hardware. We introduce a conceptually simple
technique that allows us to only render the front layer of the data, i. e.,
the lines or points that lie close to each other and closest to the viewer.
These front elements are rendered such that they do not overlap each
other but at the same time they occlude elements much further away
from the viewer. This depth-dependent halo technique emphasizes
bundles of co-linear line segments (which are likely to be important,
see Fig. 1) and abstracts from less structured segments. Moreover, we
de-emphasize elements that are farther away to enhance depth percep-
tion, and filter the dataset for further emphasis of important structures.
We further show how the discrete and black-and-white nature of the
depicted elements lends itself to anaglyphic stereo rendering.

The remainder of the paper is organized as follows. In Section 2 we
place our work in the context of related approaches. Next, we present
the technical details of the approach in Section 3. Then in Section 4,
we show examples of visualizations created with our technique for sev-
eral application domains. In Section 5 we give details on an informal
evaluation of our technique with domain experts in neurosurgery and
tractography and, finally, conclude the paper in Section 6, where we
also mention some avenues for future work.

2 RELATED WORK

To place our work on illustrative line rendering into context, we dis-
cuss techniques for both line visualization and illustrative rendering.

2.1 Line Data Visualization Techniques
Numerous techniques exist to depict paths of particles or other linear
structures, in particular for flow visualization. For example, people
have employed (shaded) lines, tubes, or strips (ribbons) whose color
and shape can be changed depending on data properties such as veloc-
ity, flux, or direction [30] (e. g., Fig. 2(a)). Particularly related to our
work are scalable, self-orienting surface techniques [23, 24, 33, 34]
which create shaded, view-aligned strips to visualize 3D vector fields.
In contrast, our goal is to create high-resolution black-and-white visu-
alizations for dense datasets using illustration principles. As an alterna-
tive to explicitly representing streamlines, texture-based methods [21]
such as line integral convolution [7] provide both a global and local
impression of flow data. This technique was extended to 3D [14, 16]
where, related to our work, halos are used to increase depth perception.
For a similar purpose, halos are used in streamline-based volume visu-
alization [40]. Both streamlines and texture-based techniques are em-
ployed in many other domains which rely on the visualization of line

http://www.cs.rug.nl/svcg/People/MaartenEverts
http://www.cs.rug.nl/svcg/People/HenkBekker
http://www.cs.rug.nl/~roe/
http://www.cs.rug.nl/~isenberg/
http://www.rug.nl/
mailto:m.h.everts@rug.nl
mailto:h.bekker@rug.nl
mailto:j.b.t.m.roerdink@rug.nl
mailto:m.h.everts@rug.nl
mailto:isenberg@cs.rug.nl

Fig. 1. Illustrative visualization of a subset of DTI fiber tracts with depth-
dependent halos.

data resulting from real or simulated linear structures or particle traces.
Examples include physics (e. g., electric or magnetic field lines), chem-
istry (e. g., protein structures), and meteorology (e. g., storm data).

In particular in the medical domain, line data such as tracts of mus-
cle or brain fibers is important. Here, fiber tracts are estimated from
diffusion weighted magnetic resonance imaging (DW-MRI) [25]. The
fiber tracts represent, for example, bundles of neural axons connecting
different parts of the brain. Such fiber tracts are typically rendered
as lines or tubes with coloring or shading applied to them to enhance
understanding of spatial relationships [28, 43, 44].

Rendering all possible fiber tracts or particle traces in a dataset is
often not feasible with visualization techniques due to performance
and occlusion issues. Thus, a selection is typically made, showing
only fiber tracts that pass through a certain region of interest. Various
methods are available for making this selection (e. g., [3]).

2.2 Illustrative Visualization and Rendering Techniques
In a number of line-based scientific visualization techniques, people
make use of illustration principles. For instance, Joshi et al. [18] em-
ploy techniques that enhance the boundary or silhouette to accentuate
internal features in visualizations of hurricanes. Similar contour en-
hancing techniques have also been investigated for flow data [36] or
medical volume data [6, 10]. Related to illustrative visualization is
non-photorealistic rendering (NPR), where lines have been used as a
means to illustrate surfaces (e. g., [15, 42]) but are usually placed onto
surfaces during rendering rather than being the original carrier of the
depicted data or shape. Such techniques have been applied, for exam-
ple, to medical volume visualization [9, 26, 38] as well as rendering
of fiber and vessel structures [20, 31]. In the latter examples, line
rendering techniques are used to enhance and supplement traditional
techniques that are based on larger cylindric structures.

Techniques that enhance depth perception are important specifically
in line rendering and have been introduced to NPR in its early days.
Such techniques include the use of visibility information [1, 19] as
well as the use of halos [2, 11], the illustration method we also use in
our own work. Halos, however, can not only be used in line render-
ing but have been applied in more traditional visualization techniques
based, e. g., on line integral convolution [16] or volume rendering [5]
to enhance depth perception. Related to these approaches as well as
to our own are techniques that make use of depth buffer manipulations
to enhance the depth perception in the created images. Noteworthy in
this respect are, in particular, depth buffer unsharp masking [22], depth
cueing in molecular visualization [37], and pen-and-ink tree rendering
using depth discontinuities [8]. In contrast to these techniques, our ap-
proach extends similar illustrative rendering principles to the domain
of dense line or point data which are rendered without shading and
which, thus, rely even more on cues to indicate depth relations.

3 ILLUSTRATIVE 3D LINE RENDERING

Based on the previously discussed techniques to visualize line data, we
combine these with principles of halo-based non-photorealistic render-
ing of lines. We focus on datasets where dense sets of lines are impor-

(a) Traditional tubes with shading. (b) Plain line rendering.

(c) All lines with halos. (d) Lines with illustrative halos.

Fig. 2. Comparison of rendering techniques for line datasets.

tant, for example, DTI fiber tracts or particle traces in physical simula-
tions. In this section we first give a general motivation and overview
of the technique and then discuss its realization in detail. Next, we
show how the technique is extended to point clouds, present a number
of visual enhancements, and address data filtering.

3.1 General Motivation and Technique Overview
The rendering of line data requires, in particular, that the depth relation
of the lines is clearly depicted. As discussed in the previous section,
shaded cylindrical representations were traditionally employed for this
purpose. This approach has a number of limitations. Due to the use
of shading, each line needs to have a certain minimum width in order
for viewers to be able to discriminate each individual line’s orienta-
tion and location in space (Fig. 2(a)). This limits the number of lines
that can simultaneously be depicted and also hinders the visualization
of natural line bundles if each line is to be visible individually. An
alternative approach would be to use simple black lines on a white
background (Fig. 2(b)). On the one hand, a higher number of data el-
ements can potentially be depicted because lines can easily be packed
more tightly. Moreover, it also becomes more feasible to use such il-
lustrations in print, because these do not require shading and thus do
not rely on halftoning. On the other hand, this introduces a lot of vi-
sual clutter into the image and results in large regions of black being
shown. Thus, it is no longer possible to distinguish foreground from
background lines, which also means that the depth relation is lost.

To address these issues and to be able to use the advantages from
both techniques, we employ line halos as previously used in line ren-
dering [2, 11]. Since we are dealing with dense datasets of lines, sim-
ply assigning a halo to each line is not sufficient (Fig. 2(c)). Instead,
we present a technique that assigns halos to all lines, but these halos are
only rendered if the lines are sufficiently separated in depth (Fig. 2(d)).
This causes the halos of lines that lie in front of others to occlude lines
further away. If lines have the same distance to the viewer, however,
they do not occlude one another. This depth-dependent halo reduces
visual clutter, emphasizes line bundles by visually clustering them, and
depicts depth relations as in previous halo techniques [2, 5, 11], result-
ing in an effective illustration of the data.

The general approach is to use view-aligned triangle strips. Each
strip represents one of the lines and always faces the viewer (similar to
billboards). Strips are textured so that the center is black, representing
the line, and the perimeter is white to create the halo. In addition,
each strip is bent away from the viewer as shown in Fig. 3(a). This
way the part of the strip that is not black prohibits parts of other lines
to be drawn that are close in image space but further away from the
viewer in depth. This approach is related to the ε-z-buffering used
in point-based rendering [4, 12] that uses fragment-dependent depth
corrections to determine the visibility of splats in a two-pass process.

(a)

wline

wstrip

dmax

vi
e

w
in

g
 d

ir
e

ct
io

n

halo

(b)

Fig. 3. Schematic depiction of the rendering of the creation of depth-
dependent halos for large depth discontinuities: (a) projected view of
the depth displacement, (b) view of a line (black) being crossed by a
perpendicular line (red) creating a halo. The fat parts are the actually
rendered line pixels, the thin lines illustrate the z-buffer manipulation.

Our approach, however, makes use of fragment depth manipulations in
a single rendering pass to directly render lines that are close together
without overlapping halos.

In practice, our approach for rendering 3D lines is a two-stage pro-
cess. In the first stage we transform the lines into view-oriented trian-
gle strips, while in the second stage we manipulate the shape of the
strip and texture it. These two stages are mapped to the two stages in
modern GPU processing: vertex shading and fragment shading.

3.2 View-Oriented Triangle Strips
Our goal is to display the line data as view-aligned strips that repre-
sent both the line itself as well as the halo around it. Therefore, before
sending data to the GPU, we organize our input lines in the CPU as
sequences of 3D vertices. To be able to later render the lines as trian-
gle strips on the GPU, we create zero-width line strips on the CPU by
duplicating each vertex but retaining the vertex locations. On the GPU,
this strip needs to be widened by extending it perpendicular both to the
viewing direction and the line direction so that it is always oriented to
face the viewer. We derive the direction of the line locally at each of
the vertices by taking the normalized average direction of both line
segments adjacent to the vertex (or one segment for start and end of
each line). This step occurs before the vertices are duplicated, and the
direction is copied to the new vertex when the duplication is carried
out. As a final pre-processing step, each of the vertices is assigned
texture coordinates (u, v). For this purpose, the u-coordinate is interpo-
lated along the length of the line, while the v-coordinate is set to 1 for
the “left” side of the strip and to 0 for its “right” side. As a result, each
vertex now has a position, texture coordinates, and a direction. This
information in the form of zero-width triangle strips is transferred to
the GPU as vertex buffer objects.

During the GPU rendering stage (once for each rendering pass), the
strip is widened and view-aligned. For this purpose we extend the zero-
width strip into a direction that is perpendicular to both the direction
of the line D and the view direction V. Thus, we compute the cross-
product between V and D, normalize the resulting vector, and move a
vertex along this direction if v = 1 and in opposite direction if v = 0.
Hence, the new vertex position pout is calculated as:

pout = pin +‖V×D‖(v−0.5)wstrip, (1)

where pin is the input vertex position and wstrip is the strip width. The
result is that the strip always faces the viewer, and the centerline of the
strip is located along the original line.

3.3 Fragment Texturing and Depth Displacement
The next step in the process is to assign either black or white to the
individual pixels of the line strip so that both line and halo are created,
but without the halo obstructing nearby lines. This occurs in the frag-
ment shader after the previously created line strip has been rasterized.
We first determine the distance (s) to the center of the strip for each

Fig. 4. Illustration of how the line halos change depending on the dis-
tance of the lines with respect to each other.

(a) (b)

Fig. 5. Comparing rendering (a) without and (b) with tapering.

fragment, again using the texture coordinates:

s = wstrip|v−0.5|. (2)

If this distance s is smaller than half the line width (wline), the frag-
ment’s output color is set to black and its depth value is left untouched.
Otherwise, the fragment’s output color is set to white and its depth is
adjusted depending on the distance from the strip’s center (Fig. 3(a)):

dnew = dold +dmax fdisplacement(2|v−0.5|). (3)

Here, dnew is the fragment’s new depth, dold is the its old depth, dmax is
the maximum displacement, and fdisplacement is a function that maps a
scalar value x ∈ [0,1] to [0,1], representing the specific shape of depth
displacement. A simple linear function has proven to be suitable, and
we use fdisplacement(x) = x for all our examples (except Fig. 17).

The effect of this depth displacement of fragments is illustrated in
Fig. 3(b) which shows one line (black) being rendered on top of an-
other one (red). Because depth testing is enabled in the rendering,
parts of the red crossing line are obscured by white fragments of the
triangle strip belonging to the black foreground line. The visual effect
is a halo around the black foreground line.

If the red line in Fig. 3(b) were to move further back, the width
of the halo would increase until the difference in depth between both
lines is larger than dmax, after which the halo width remains constant
(see Appendix A). Moving the background line toward the foreground
line, in contrast, would decrease the halo width until the halo com-
pletely disappears. This happens if the background line is closer to the
foreground line than fdisplacement(0.5wline). This effect is illustrated in
Fig. 4 in which a series of vertical lines of decreasing distance to the
viewer are rendered with respect to a horizontal line. Notice how the
changing halo widths enhance the depth perception in this case.

3.4 Visual Enhancements
So far the technique correctly represents haloed lines that do not oc-
clude each other if they lie close together. For an individual line that
lies clearly in front of a bundle of other lines this has the effect of
showing the rectangular strip—visible, in particular, at the line ends
(Fig. 5(a))—which can be distracting. We improve the visual appear-
ance of the lines by tapering (gradually narrowing line ends, Fig. 5(b)).
We place a stencil texture over the strip to be checked in the fragment
shader which only lets fragments pass that are inside the mask. To
make the amount of tapering independent from the line length, the u
texture coordinate is, in fact, interpolated non-linearly along each tri-
angle strip. For the first ntapered vertices the u-coordinate is linearly
interpolated between 0 and ttapered, assuming they are approximately
equidistant. Similarly, the last ntapered vertices are mapped to u-values
between 1− ttapered and 1. We use ntapered = 2 and ttapered = 0.2.

(a) (b)

Fig. 6. Rendering (a) without and (b) with additional depth cueing.

One important aspect of visualization of 3D data is to correctly dis-
play spatial relationships. While the depth-dependent halo rendering
already supports depth perception (Fig. 6(a)), we further enhance this
effect by employing depth cueing via adjusting the line width [11].
The perspective projection that we use already introduces some fore-
shortening of the line strips with growing distance from the viewer.
We further emphasize this effect by manipulating the portion of the
strip that is rendered as line, reducing it the further away a line section
lies from the viewer (Fig. 6(b)). This is realized in the fragment shader
by modifying wline with respect to the current fragment’s z-value. The
degree of depth cueing can be adjusted w.r.t. the desired effect.

Finally, the visual quality of a line rendering depends to a large de-
gree on the way the resulting image is represented. While using vector
graphics could be advisable for the line renderings we are producing
[17], we can also achieve similar results by rendering high-resolution
1-bit black-and-white images as used throughout the paper. For on-
screen rendering we either use a gradual transition from black to white
in the fragment shader or employ full-scene anti-aliasing (FSAA). For
example, Coverage Sampling Anti-Aliasing (CSAA) can be enabled
to produce higher-quality images with less sampling artifacts.

3.5 Extension to Point Cloud Data

In addition to rendering line data, the technique can also be extended to
visualize point clouds. This approach relates to point-based graphics
[12] such as point splatting (e. g., [4]) or surfels [29], the latter having
previously been used in NPR [32]. To add explicit halos around points
we render view-aligned geometry, i. e., quads, similar as before with
lines. Thus, we quadruple each vertex during pre-processing but do not
need to extract a direction. Instead, each zero-sized quad is oriented
to the viewer in the vertex shader by extending it in the positive and
negative x- and y-direction in screen-space. The actual size of the
quad is determined in model-space, however, to guarantee a consistent
behavior when zooming in and out.

For this purpose we back-project an up-vector (positive y-direction)
and side-vector (positive x-direction) in screen-space to model-space,
which are then used as basis-vectors for enlarging the quads. Again,
with the texture coordinates of the zero-sized quad we determine the
precise transformation for each vertex. In the fragment shader, the
depth-displacement occurs similar to the case of lines, resulting in a
cone shape being rendered to the z-buffer. The distance from the center
is computed using the Euclidean distance, the same is also used for
masking the halo to a circular shape. The overall processing is slightly
more computationally and memory intensive than with lines, due to
the quadrupling of points and the use of the Euclidean distance.

3.6 Filtering

As another means of illustrative abstraction (and in addition to select-
ing a subset of lines through a ROI) we implemented filtering of the
data to remove selected parts, e. g., low velocity streamlines or fiber
tracts in areas with low fractional anisotropy (FA). For this purpose
we assign an extra scalar attribute to each vertex of the data based on
which the filtering will occur. This filtering attribute is passed onto the
GPU and replicated for each fragment in the rasterization stage. The
fragment shader then compares each fragment’s filtering attribute with
a pre-determined threshold and discards fragments that do not pass
this test. The threshold can now be changed at run-time and permits
an interactive selection of the amount of filtering that is to occur.

(a) (b) (c)

Fig. 7. Three example stages of filtering, using the fractional anisotropy
(FA) value of a DTI fiber tract dataset. With the growing filtering thresh-
old for FA, more of the internal structure of the dataset is revealed.

(a)

(b)

Fig. 8. Anaglyphic stereo visualizations for two example datasets: (a)
simulated air flow in an office and (b) DTI fiber tracts. For use with red-
cyan or red-green glasses (red on the left eye).

Unfortunately, this process re-introduces the problem of the rectan-
gular shape of line ends discussed in Section 3.4. To address it, we
change the process of halo masking when filtering is enabled. Instead
of using the actual interpolated u texture coordinate we derive a new u-
value from the interpolated filtering attribute and the currently active
threshold such that the ends of the filtered lines are tapered. Limita-
tions are that this assumes the filter attribute changes gradually and
that it does not result in the same visual quality as before.

The scalar attribute used for filtering needs to be meaningful with
respect to the specific dataset. For example, for DTI fiber tract data
we use fractional anisotropy, which is a measure for the amount of
directionality in the data (Fig. 7). Since this value is defined based
on a volume representation, it is interpolated for each vertex in the
pre-processing stage based on the vertex’ location in the volume.

3.7 Anaglyphic 3D Rendering
The three-dimensionality of the data is one important aspect that needs
to be visualized, even beyond the support of halos. In regular rendering
for visualization this is achieved through regular shading, potentially

http://developer.nvidia.com/object/coverage-sampled-aa.html

(a) Emphasis of dense bundles. (b) Abstraction for non-aligned lines.

Fig. 9. Illustration principles at work. Detail regions from Fig. 1.

combined with special techniques such as depth buffer unsharp mask-
ing [22] or ambient occlusion [37]. Alternatively, stereo rendering and
projection can be used, i. e., computing separate images for each of
the viewer’s eyes. The black-and-white character of our visualization
technique does not permit using shading-based techniques, but lends
itself to stereo rendering without requiring complicated projection se-
tups: anaglyphic rendering. For this purpose we render the scene from
two different viewpoints, color these red and cyan, and overlay them
on top of each other for use with red-cyan glasses (Fig. 8).

The illustrative line rendering technique lends itself, in particular, to
this stereo vision technique because it is monochrome and the discrete
elements (lines and points) allow the human visual system to make
an easy association between related elements. The halos around lines
and line bundles enhance this effect because it makes the separation
of individual elements that belong to each other easier. In addition to
anaglyphic rendering, we also applied the technique to passive stereo
rendering using polarized light, resulting in a comparable experience
but without the small color artifacts caused by the red-cyan glasses.

4 DISCUSSION

After having described the illustrative line rendering technique and its
implementation in detail, we now discuss some application aspects.
In particular, we address how depth-attenuated halos incorporate the
illustration principles of abstraction and emphasis, how specific visual
results can be achieved, and how the technique can be applied to a
number of application scenarios and input data types.

4.1 Illustration Principles in Depth-Attenuated Halos
Our illustrative rendering technique for lines has the effect that no or
only small halos are created between lines that form concentrated bun-
dles (Fig. 9(a)). This effect emphasizes line bundles visually, through
larger dark regions or tightly packed co-linear lines and through sepa-
ration from the background. This emphasis may make the individual
lines less distinguishable, but supports and highlights the importance
and the coherency of such dense line bundles. Lines that do not form
concentrated bundles (which are less aligned), in contrast, are visually
de-emphasized and abstracted (Fig. 9(b)): For crossing lines that are
not at the same distance from the viewer many halos are generated,
splitting these lines up into smaller segments. These emphasis and ab-
straction effects are enhanced further through the usage of additional
depth cueing via line width attenuation, emphasizing front parts and
de-emphasizing distant parts of the scene. These methods allow us to
refrain from using any lighting while still illustrating spatial relations.

The illustrative line rendering technique using depth-attenuated ha-
los has the additional effect that lines behind tight bundles are visually
separated due to the halo that is rendered around the bundle. Thus,
the technique renders the line data as implicit layers that are visually
separated from each other through their halos. Occlusion situations
are clearly visible through the halos surrounding the front line bun-
dles, leading to a visual depth clustering similar to the halos in [37].
Moreover, this effect also means that for bundles or other co-linear
lines only the front-most layer of lines are displayed in the resulting
images—visible, in particular, in videos, during interactive manipula-
tion, or when viewing anaglyphic stereo images (Fig. 8). Therefore,
despite the fact that no surfaces exist explicitly in the data, the render-
ing has the interesting effect that surfaces that implicitly exist in the
data by means of densely packed bundles are visually noticeable.

(a) Full dataset. (b) Filtered dataset.

Fig. 10. Fiber tracts from diffusion tensor imaging (DTI). Notice the vi-
sual bundling and depth clustering in (b).

Fig. 11. Simulated air flow in an office, same dataset as in Fig. 8(a).

4.2 Case Studies of Application Scenarios
To illustrate the applicability of our technique we now discuss a num-
ber of case studies, using line datasets from a variety of domains.

4.2.1 DTI Fiber Tracts
Nerve fiber tracts extracted from diffusion tensor imaging (DTI) give
an indication of how actual bundles of axons connect different parts
of the brain. Depending on the resolution of the underlying MRI scan,
a large number of fibers can be extracted. In our example in Fig. 10,
150 352 tracts with 1 625 472 vertices in total were extracted using the
program Diffusion Toolkit, the small average vertex number per tract
resulting from many short tracts. Because of such large dataset sizes,
fibers are difficult to visualize with traditional techniques due to perfor-
mance, rendering technique (shaded cylinders need a certain amount
of space), and overview/occlusion issues. Hence, usually subsets of
the fiber tracts are selected and visualized. Our illustrative line ren-
dering technique can easily render whole datasets at interactive rates
but also suffers from overview/occlusion issues (Fig. 10(a)). Thus, we
also select subsets (e. g., Fig. 1 and 8(b), where the ROI is a sagittal
slice) and/or use filtering to cope with this type of data (e. g., Fig. 7
and 10(b)). Nevertheless, our technique is able to display all fibers in
a subset so that no automated data reduction technique is necessary
that would cluster several lines into single ones. With our technique it
is possible to visually distinguish single fibers from smaller or larger
fiber bundles rather than requiring algorithmic support for this task.

4.2.2 Simulated Flows of Fluids or Gases
Another domain where line data is generated is the simulation of fluids
or gases. For example, we used VTK’s “office” example dataset and
extracted 786 streamlines from it using VTK (Fig. 8(a) and 11). The
visualization in Fig. 11 shows where the simulated air flow is focused
and where it branches off, highlighting concentrated bundles of air
movement. Fig. 12 shows two views of a similar simulation of water
flow using 1 400 streamlines and 2 603 605 vertices in total. Here, the
twisted flow of the water in a number of vortices is illustrated, while
focused flow is still emphasized. The combination of these illustrative

Fig. 12. Two views of a selection of simulated water flow streamlines.

Fig. 13. Illustrative line rendering of a denser set of streamlines of the
data used in Fig. 12, without and with filtering on velocity magnitude to
reveal inner structures, showing the detail our technique can reveal.

Fig. 14. Visualization of point-based elevation data (≈ 4.4 · 106 points;
data obtained from http://www.OpenTopography.org/).

effects gives the illustrations a vividly three-dimensional appearance.
Fig. 13 shows two additional illustrative renderings of the same data
(without and with filtering) but using a much higher number of stream-
lines (7 910 911 vertices and 4 475 streamlines), thus demonstrating
how filtering on velocity can reveal inner structures.

4.2.3 Point Data: Elevation and 3D Scanning
The extension to point cloud data lets us explore rendering datasets
such as elevation scans from radar measurements or 3D object scans.
Fig. 14 shows an example of the former. The figure shows how points
that are close together do not generate halos (planar areas), while for
regions where points are further apart along the view direction more
halos and, consequently, brighter shades are generated (e. g., note the
trees in the foreground). Rows of trees are emphasized with a com-
pletely empty halo around them. Fig. 15 shows how the technique
can be applied to rendering “normal” 3D shapes that are represented
by points on their surface. Notice here as well the effect of visually
separating contiguous regions of points at depth discontinuities.

4.2.4 Mathematical Shapes
As a last example, Fig. 16 shows a selection of much simpler and less
dense datasets from knot theory. This illustrates that our method can
also handle simple shapes with similar results as in previous work [11].

4.3 Parametrization
A good set of parameters for a dataset depends to a certain degree on
the specific dataset. For the illustrations shown in this paper we chose

(a) (b)

Fig. 15. Point datasets representing the surface of 3D shapes.

Fig. 16. Visualizations of simple mathematical shapes from knot theory.

(a) fdisplacement(x) = x2 (b) fdisplacement(x) =
√

x

Fig. 17. The effect of using nonlinear displacement functions.

wline and wstrip such that wline is between 4 and 8 times as large as
wstrip, for point data the factor was between 8 and 27. The size of wline
also depends on the specific data and needs to be smaller for datasets
with more elements. The maximum displacement, dmax, is set to 0.01
for all illustrations in this paper. Setting dmax to zero has the effect of
giving all lines a halo, potentially blocking other lines, see Fig. 2(c).
In general, once a good setup for these parameters is found for a given
dataset, they do not need to be changed for interactive exploration and
filtering or when visualizing lines resulting from a different ROI.

Unless otherwise indicated, we always use the same linear displace-
ment function fdisplacement(x) = x. Changing this function can easily
be accomplished by adapting the function in the shader or by using
a non-linear gray-ramp texture. The resulting visual effect differs to
some degree from previously shown images as shown in Fig. 17 and
can be used to achieve the impression of more or less densely packed
bundles. For example, using fdisplacement(x) = x2 results in less empha-
sis for the bundles but more individual lines being visible (Fig. 17(a)),
while fdisplacement(x) =

√
x has the opposite effect (Fig. 17(b)).

4.4 Performance and Limitations of the Technique
In Table 1 we give average frame rates for a selection of datasets. The
measurements were taken on a 3GHz Intel Core2 Extreme with 4GB
RAM, running Windows Vista, and using an NVIDIA GeForce 8800
GTX graphics card. The rendering performance for both lines and
points is determined mainly by the number of lines, the number of ver-
tices, the size of the dataset on the screen, and the size of the strips
or quads. For the measurements, we maximized each visualization
on the 812 × 600 pixel rendering window and then measured the av-
erage speed for animating a rotation, with vertical sync disabled and
without anti-aliasing or filtering. The offline pre-processing to extract

http://www.OpenTopography.org/

Table 1. Performance measurements, sorted by dataset size.

Fig. Lines Vertices Type Anagl. Frame rate
15(a) n/a 172 973 point no 190fps

1 11 306 260 836 line no 123fps
8(b) 11 306 260 836 line yes 65fps

11 786 278 849 line no 290fps
8(a) 786 278 849 line yes 163fps

15(b) n/a 437 645 point no 65fps
10(a) 150 352 1 625 472 line no 24fps
12 1 400 2 603 605 line no 43fps
14 n/a 4 440 900 point no 12fps
13 4 475 7 910 911 line no 11fps

streamlines from 3D vector data took in the order of several seconds
to several minutes and was done with VTK.

Besides the obvious limit in the number of lines and vertices that
the technique can handle as just indicated by the performance data,
there are two aspects that are of further importance. One is that, while
the technique works well when the data elements (lines or points) in-
herently form a surface or closely bundled structures, it performs not
as well for datasets with less structured but still dense elements. For
example, if a volume were to be filled with a dense set of random lines,
the technique would not create meaningful visualizations. The second
limitation is that the technique performs best for visualizing the outer
layer of closely bundled elements. While filtering does allow to look
at subsets of the data, it still does not allow to look beyond the surface
of the visible structures. Transparency based on a given parameter
cannot easily be added because this would require sorting based on in-
dividual line segments which would greatly diminish the technique’s
performance and, thus, its suitability to large and dense line datasets.

5 INFORMAL EVALUATION

To evaluate our illustrations we conducted a small informal study of
DTI-based fiber tract visualizations with four medical domain experts,
three of them neurosurgeons and one a researcher in tractography. We
showed them still images and the interactive tool, both in the regular
and the anaglyphic versions. We were interested in their initial re-
sponse but also asked questions about the quality of the illustrations,
the ability to show detail and depth relations, and the usefulness for
specific applications. We also asked about shortcomings, possible im-
provements, and potential applications scenarios for our technique.

The result from this evaluation was that all experts were impressed
by the visualizations, commenting that they were “beautiful,” “impres-
sively good,” that they “almost look like an anatomical specimen,” and
that they visualize “what the fibers would look like if a brain was dis-
sected by an anatomist.” All said that, compared to the tract visualiza-
tions they are used to (i. e., lines or tubes colored based on direction),
our illustrative visualizations “show better depth relation and structure”
and that they emphasize bundles well. One commented on the visi-
ble detail saying “one can really see how structures are fanning out.”
Looking at anaglyphic images, all liked that the fibers “really come
out and show structure” and that the images are “extremely clear.” All
confirmed our design decisions and said that our technique would be
particularly useful for illustration purposes, for example for using the
created images in educational contexts such as brain atlases.

All domain experts used the term “very suggestive” in their descrip-
tions, meaning that the illustrative character of the technique is very
powerful and shows the bundling and path as well as depth relations
very well. However, they also noted that our technique suggests the
path of the visualized fibers would actually be like the real neural fibers
in the brain, something that the underlying DTI data may not be able
to provide. Thus, to avoid the illustrations showing something that
does not actually exist they suggested using a fiber tracking method
that does a better job at detecting fiber crossings (e. g., Q-Ball). Addi-
tional suggestions were to provide context by combining the technique
with other data visualization methods such as volume rendering or by
adding relevant structures such as tumors to the visualization. More-
over, while they all liked the interactive application, they all requested
even more interactivity such as being able to select subsets of smaller

fiber bundles that, e. g., connect two regions of the brain. We plan to
integrate these suggestions in a future version of the tool.

6 CONCLUSION

We have presented a technique for illustrative visualization of dense
line datasets. We create depth-attenuated halos around lines that do
not overlap each other if the lines are close in depth, but do occlude
lines located further away in depth. This has the effect of emphasiz-
ing tightly bundled line structures and abstracting from less organized
regions in the data. An additional important illustrative effect is the
resulting visual depth clustering of visually connected regions. The
visually connected regions portray surfaces implicitly existing in the
dataset due to its inherent structure. These illustrative rendering tech-
niques are augmented by traditional interaction and line rendering tech-
niques such as filtering and depth cueing. While supporting the render-
ing at interactive to real-time frame rates depending on the size of the
dataset, the technique is also capable of producing high-quality black-
and-white renderings so that the results can easily be used in printed
materials. In addition, it easily extends to point cloud datasets.

An informal evaluation with domain experts revealed that our visu-
alizations are successful in illustrating brain fiber structures, in particu-
lar showing detail, emphasizing fiber bundles, and depicting spatial re-
lationships. While these results are encouraging, we need to continue
our evaluation and explore both a richer collection of data sources (i. e.,
other than DTI) and evaluate the technique in the other domains for
which we have created visualizations. Moreover, combining the visu-
alization technique with other methods can provide both context and
additional detail that is necessary in some domains.

Additional future work includes, for example, adapting the process
of turning lines into view-oriented triangle strips which consists of a
data duplication part that unnecessarily uses too much memory. This
can be avoided by using modern graphics cards extensions such as
geometry shaders or the instanced arrays extension. In the case of
point data, the point sprite extension could be used. The visual appear-
ance could also be improved by exploring alpha-blending, for instance
guided by the filtering process. By employing line style rendering
techniques such as used in [42] it may even be possible to maintain
the black-and-white character necessary for high-quality print output.

ACKNOWLEDGMENTS

We thank Cris Lanting and Pim van Dijk from the BCN NeuroImag-
ing Center in Groningen, NL, for the brain datasets used in this paper.
The turbulent flow simulation dataset is courtesy of Martin Rumpf,
Univ. Bonn, Germany. The armadillo and dragon datasets are from the
Stanford Computer Graphics Laboratory. We also thank Alessandro
Crippa, Moritz Gerl, Wladimir van der Laan, and Alex Telea for inter-
esting discussions. This research is funded by the Dutch National Sci-
ence Foundation (NWO), “VIEW” project, project no. 643.100.501.

REFERENCES

[1] A. Appel. The Notion of Quantitative Invisibility and the Machine Ren-
dering of Solids. In Proc. 22nd ACM National Conference, pp. 387–393,
New York, 1967. ACM.

[2] A. Appel, F. J. Rohlf, and A. J. Stein. The Haloed Line Effect for Hidden
Line Elimination. ACM SIGGRAPH Computer Graphics, 13(3):151–157,
Aug. 1979.

[3] J. Blaas, C. P. Botha, B. Peters, F. M. Vos, and F. H. Post. Fast and
Reproducible Fiber Bundle Selection in DTI Visualization. In Proc. Visu-
alization, pp. 59–64, Los Alamitos, 2005. IEEE Computer Society.

[4] M. Botsch and L. Kobbelt. High-Quality Point-Based Rendering on Mod-
ern GPUs. In Proc. Pacific Graphics, pp. 335–343, Los Alamitos, 2003.
IEEE Computer Society.

[5] S. Bruckner and E. Gröller. Enhancing Depth-Perception with Flexible
Volumetric Halos. IEEE Transactions on Visualization and Computer
Graphics, 13(6):1344–1351, 2007.

[6] M. Burns, J. Klawe, S. Rusinkiewicz, A. Finkelstein, and D. DeCarlo.
Line Drawings from Volume Data. ACT Transactions on Graphics,
24(3):512–518, July 2005.

[7] B. Cabral and L. C. Leedom. Imaging Vector Fields using Line Integral
Convolution. In Proc. SIGGRAPH, pp. 263–270, New York, 1993. ACM.

http://www.opengl.org/registry/specs/ARB/instanced_arrays.txt
http://www.nwo.nl/
http://doi.acm.org/10.1145/800196.806007
http://doi.acm.org/10.1145/800196.806007
http://doi.acm.org/10.1145/800249.807437
http://doi.acm.org/10.1145/800249.807437
http://doi.ieeecomputersociety.org/10.1109/VIS.2005.40
http://doi.ieeecomputersociety.org/10.1109/VIS.2005.40
http://doi.ieeecomputersociety.org/10.1109/PCCGA.2003.1238275
http://doi.ieeecomputersociety.org/10.1109/PCCGA.2003.1238275
http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.70555
http://doi.ieeecomputersociety.org/10.1109/TVCG.2007.70555
http://doi.acm.org/10.1145/1073204.1073222
http://doi.acm.org/10.1145/166117.166151
http://doi.acm.org/10.1145/166117.166151

[8] O. Deussen and T. Strothotte. Computer-Generated Pen-and-Ink Illustra-
tion of Trees. In Proc. SIGGRAPH, pp. 13–18, New York, 2000. ACM.

[9] F. Dong, G. J. Clapworthy, H. Lin, and M. A. Krokos. Nonphotoreal-
istic Rendering of Medical Volume Data. IEEE Computer Graphics &
Applications, 23(4):44–52, July/Aug. 2003.

[10] D. Ebert and P. Rheingans. Volume Illustration: Non-Photorealistic Ren-
dering of Volume Models. In Proc. Visualization, pp. 195–202, Los
Alamitos, 2000. IEEE Computer Society.

[11] G. Elber. Line Illustrations ∈ Computer Graphics. The Visual Computer,
11(6):290–296, June 1995.

[12] M. Gross and H. Pfister, editors. Point-Based Graphics. Elsevier, 2007.
[13] H. Hauser, L. Mroz, G. I. Bischi, and M. E. Gröller. Two-Level Volume

Rendering. IEEE Transactions on Visualization and Computer Graphics,
7(3):242–252, July–Sept. 2001.

[14] A. Helgeland and O. Andreassen. Visualization of Vector Fields Using
Seed LIC and Volume Rendering. IEEE Transactions on Visualization
and Computer Graphics, 10(6):673–682, Nov./Dec. 2004.

[15] A. Hertzmann and D. Zorin. Illustrating Smooth Surfaces. In Proc. SIG-
GRAPH, pp. 517–526, New York, 2000. ACM.

[16] V. Interrante and C. Grosch. Visualizing 3D Flow. IEEE Computer
Graphics & Applications, 18(4):49–53, July 1998.

[17] T. Isenberg, M. S. T. Carpendale, and M. C. Sousa. Breaking the Pixel
Barrier. In Proc. CAe, pp. 41–48, Aire-la-Ville, Switzerland, 2005. Euro-
graphics Association.

[18] A. Joshi, J. Caban, P. Rheingans, and L. Sparling. Case Study on Visual-
izing Hurricanes Using Illustration-Inspired Techniques. IEEE Transac-
tions on Visualization and Computer Graphics, 2009. To appear.

[19] M. Kaplan. Hybrid Quantitative Invisibility. In Proc. NPAR, pp. 51–52,
New York, 2007. ACM.

[20] J. Klein, F. Ritter, H. K. Hahn, J. Rexilius, and H.-O. Peitgen. Brain Struc-
ture Visualization using Spectral Fiber Clustering. In Research Posters of
SIGGRAPH, article no. 168, New York, 2006. ACM.

[21] R. S. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. H. Post, and
D. Weiskopf. The State of the Art in Flow Visualization: Dense and
Texture-Based Techniques. Computer Graphics Forum, 23(2):203–221,
June 2004.

[22] T. Luft, C. Colditz, and O. Deussen. Image Enhancement by Unsharp
Masking the Depth Buffer. ACM Transactions on Graphics, 25(3):1206–
1213, July 2006.

[23] K.-L. Ma, G. Schussman, B. Wilson, K. Ko, J. Qiang, and R. Ryne. Ad-
vanced Visualization Technology for Terascale Particle Accelerator Sim-
ulations. In Proc. Supercomputing, pp. 19–30, Los Alamitos, 2002. IEEE
Computer Society.

[24] Z. Melek, D. Mayerich, C. Yuksel, and J. Keyser. Visualization of Fibrous
and Thread-like Data. IEEE Transactions on Visualization and Computer
Graphics, 12(5):1165–1172, Sept./Oct. 2006.

[25] S. Mori and P. C. van Zijl. Fiber Tracking: Principles and Strategies – A
Technical Review. NMR Biomed, 15(7-8):468–480, Nov./Dec. 2002.

[26] Z. Nagy, J. Schneider, and R. Westermann. Interactive Volume Illustra-
tion. In B. Girod, H. Niemann, H.-P. Seidel, G. Greiner, and T. Ertl,
editors, Proc. Vision, Modeling and Visualization, pp. 497–504, Berlin,
2002. Akademische Verlagsgesellschaft Aka GmbH.

[27] P. Neumann, T. Isenberg, and S. Carpendale. NPR Lenses: Interactive
Tools for Non-Photorealistic Line Drawings. In Proc. Smart Graphics,
pp. 10–22, Berlin, Heidelberg, 2007. Springer-Verlag.

[28] V. Petrovic, J. Fallon, and F. Kuester. Visualizing Whole-Brain DTI Trac-
tography with GPU-based Tuboids and LoD Management. IEEE Transac-
tions on Visualization and Computer Graphics, 13(6):1488–1495, Nov./
Dec. 2007.

[29] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: Surface Ele-
ments as Rendering Primitives. In Proc. SIGGRAPH, pp. 335–342, New
York, 2000. ACM.

[30] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. Fea-
ture Extraction and Visualization of Flow Fields. In Eurographics 2002
State of the Art Reports, pp. 69–100. Eurographics Assoc., Aire-la-Ville,
Switzerland, 2002.

[31] F. Ritter, C. Hansen, V. Dicken, O. Konrad, B. Preim, and H.-O. Peitgen.
Real-Time Illustration of Vascular Structures. IEEE Transactions on Vi-
sualization and Computer Graphics, 12(5):877–884, Sept./Oct. 2006.

[32] R. Schmidt, T. Isenberg, P. Jepp, K. Singh, and B. Wyvill. Sketching,
Scaffolding, and Inking: A Visual History for Interactive 3D Modeling.
In Proc. NPAR, pp. 23–32, New York, 2007. ACM.

[33] G. Schussman and K.-L. Ma. Scalable Self-Orienting Surfaces: A Com-

pact, Texture-Enhanced Representation for Interactive Visualization of
3D Vector Fields. In Proc. Pacific Graphics, pp. 356–365, Los Alamitos,
2002. IEEE Computer Society.

[34] C. Stoll, S. Gumhold, and H.-P. Seidel. Visualization With Stylized Line
Primitives. In Proc. Visualization, pp. 695–702, Los Alamitos, 2005.
IEEE Computer Society.

[35] T. Strothotte, B. Preim, A. Raab, J. Schumann, and D. R. Forsey. How
to Render Frames and Influence People. Computer Graphics Forum,
13(3):455–466, Aug. 1994.

[36] N. A. Svakhine, Y. Jang, D. S. Ebert, and K. Gaither. Illustration and
Photography Inspired Visualization of Flows and Volumes. In Proc. Visu-
alization, pp. 687–694, Los Alamitos, 2005. IEEE Computer Society.

[37] M. Tarini, P. Cignoni, and C. Montani. Ambient Occlusion and Edge
Cueing for Enhancing Real Time Molecular Visualization. IEEE Trans-
actions on Visualization and Computer Graphics, 12(5):1237–1244,
Sept./Oct. 2006.

[38] S. M. F. Treavett and M. Chen. Pen-and-Ink Rendering in Volume Visu-
alisation. In Proc. Visualization, pp. 203–210, Los Alamitos, 2000. IEEE
Computer Society.

[39] I. Viola, A. Kanitsar, and M. E. Gröller. Importance-Driven Volume Ren-
dering. In Proc. Visualization, pp. 139–145, Los Alamitos, 2004. IEEE
Computer Society.

[40] A. Wenger, D. F. Keefe, S. Zhang, and D. H. Laidlaw. Interactive Vol-
ume Rendering of Thin Thread Structures within Multivalued Scientific
Data Sets. IEEE Transactions on Visualization and Computer Graphics,
10(6):664–672, Nov./Dec. 2004.

[41] G. A. Winkenbach and D. H. Salesin. Computer-Generated Pen-and-Ink
Illustration. In Proc. SIGGRAPH, pp. 91–100, New York, 1994. ACM.

[42] J. Zander, T. Isenberg, S. Schlechtweg, and T. Strothotte. High Quality
Hatching. Computer Graphics Forum, 23(3):421–430, Sept. 2004.

[43] L. Zhukov and A. H. Barr. Oriented Tensor Reconstruction. In C. D.
Hansen and C. R. Johnson, editors, The Visualization Handbook, chap-
ter 15, pp. 313–326. Elsevier, Oxford, UK, 2004.

[44] M. Zöckler, D. Stalling, and H.-C. Hege. Interactive Visualization of 3D-
Vector Fields Using Illuminated Stream Lines. In Proc. VIS, pp. 107–113,
Los Alamitos, 1996. IEEE Computer Society.

A WIDTH OF THE DEPTH-ATTENUATED HALOS

Assuming a depth displacement that is proportional to the distance
from the center line and, more specifically, that fdisplacement(x) = x, the
width of the generated halo between two lines whalo can be derived as
follows. Let ∆z be the relative distance in the z-direction of the two
considered lines, then three possible cases need to be considered:

whalo =

0 for 0≤ ∆z≤ wlinedmax

wstrip
1
2 (wline−

wstrip∆z
dmax

) for wlinedmax
wstrip

< ∆z < dmax
1
2 (wline−wstrip) for ∆z≥ dmax

(4)

Fig. 18 illustrates cases 1 & 2 using a blue and a red crossing line, resp.

wline

wstrip

dmax

vi
e

w
in

g
 d

ir
e

ct
io

n

halo
(only for red line)

whalo

∆z
∆z

view from
viewpoint:

Fig. 18. Figure based on Fig. 3(b), the black line in front (when looking
in the viewing direction) is crossed by two other lines (blue and red line)
further away from the viewer. The width of the halo Whalo depends on the
relative distance ∆z of either of these lines to the line in front (indicated
by the differently colored ∆z distances). In the figure, there is no halo
between the black and the blue line, but there is a halo between the
black and the red line. The halo does not grow further (maximum halo)
when ∆z grows to be larger than dmax.

http://doi.acm.org/10.1145/344779.344792
http://doi.acm.org/10.1145/344779.344792
http://doi.ieeecomputersociety.org/10.1109/MCG.2003.1210864
http://doi.ieeecomputersociety.org/10.1109/MCG.2003.1210864
http://doi.ieeecomputersociety.org/10.1109/VISUAL.2000.885694
http://doi.ieeecomputersociety.org/10.1109/VISUAL.2000.885694
http://dx.doi.org/10.1007/s003710050022
http://www.elsevier.com/wps/find/bookdescription.cws_home/710117/description
http://doi.ieeecomputersociety.org/10.1109/2945.942692
http://doi.ieeecomputersociety.org/10.1109/2945.942692
http://doi.ieeecomputersociety.org/10.1109/TVCG.2004.49
http://doi.ieeecomputersociety.org/10.1109/TVCG.2004.49
http://doi.acm.org/10.1145/344779.345074
http://dx.doi.org/10.1109/38.689664
http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH05/041-048
http://dx.doi.org/10.2312/COMPAESTH/COMPAESTH05/041-048
http://doi.ieeecomputersociety.org/10.1109/TVCG.2008.105
http://doi.ieeecomputersociety.org/10.1109/TVCG.2008.105
http://doi.acm.org/10.1145/1274871.1274879
http://doi.acm.org/10.1145/1179622.1179816
http://doi.acm.org/10.1145/1179622.1179816
http://dx.doi.org/10.1111/j.1467-8659.2004.00753.x
http://dx.doi.org/10.1111/j.1467-8659.2004.00753.x
http://doi.acm.org/10.1145/1141911.1142016
http://doi.acm.org/10.1145/1141911.1142016
http://doi.ieeecomputersociety.org/10.1109/SC.2002.10007
http://doi.ieeecomputersociety.org/10.1109/SC.2002.10007
http://doi.ieeecomputersociety.org/10.1109/SC.2002.10007
http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.197
http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.197
http://dx.doi.org/10.1002/nbm.781
http://dx.doi.org/10.1002/nbm.781
http://dx.doi.org/10.1007/978-3-540-73214-3_2
http://dx.doi.org/10.1007/978-3-540-73214-3_2
http://dx.doi.org/10.1109/TVCG.2007.70532
http://dx.doi.org/10.1109/TVCG.2007.70532
http://doi.acm.org/10.1145/344779.344936
http://doi.acm.org/10.1145/344779.344936
http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.172
http://doi.acm.org/10.1145/1274871.1274875
http://doi.acm.org/10.1145/1274871.1274875
http://doi.ieeecomputersociety.org/10.1109/PCCGA.2002.1167879
http://doi.ieeecomputersociety.org/10.1109/PCCGA.2002.1167879
http://doi.ieeecomputersociety.org/10.1109/PCCGA.2002.1167879
http://doi.ieeecomputersociety.org/10.1109/VIS.2005.124
http://doi.ieeecomputersociety.org/10.1109/VIS.2005.124
http://dx.doi.org/10.1111/1467-8659.1330455
http://dx.doi.org/10.1111/1467-8659.1330455
http://doi.ieeecomputersociety.org/10.1109/VIS.2005.53
http://doi.ieeecomputersociety.org/10.1109/VIS.2005.53
http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.115
http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.115
http://doi.ieeecomputersociety.org/10.1109/VISUAL.2000.885696
http://doi.ieeecomputersociety.org/10.1109/VISUAL.2000.885696
http://doi.ieeecomputersociety.org/10.1109/VISUAL.2004.48
http://doi.ieeecomputersociety.org/10.1109/VISUAL.2004.48
http://doi.ieeecomputersociety.org/10.1109/TVCG.2004.46
http://doi.ieeecomputersociety.org/10.1109/TVCG.2004.46
http://doi.ieeecomputersociety.org/10.1109/TVCG.2004.46
http://doi.acm.org/10.1145/192161.192184
http://doi.acm.org/10.1145/192161.192184
http://dx.doi.org/10.1111/j.1467-8659.2004.00773.x
http://dx.doi.org/10.1111/j.1467-8659.2004.00773.x
http://www.elsevier.com/wps/find/bookdescription.cws_home/702428/description
http://doi.ieeecomputersociety.org/10.1109/VISUAL.1996.567777
http://doi.ieeecomputersociety.org/10.1109/VISUAL.1996.567777

	Introduction
	Related Work
	Line Data Visualization Techniques
	Illustrative Visualization and Rendering Techniques

	Illustrative 3D Line Rendering
	General Motivation and Technique Overview
	View-Oriented Triangle Strips
	Fragment Texturing and Depth Displacement
	Visual Enhancements
	Extension to Point Cloud Data
	Filtering
	Anaglyphic 3D Rendering

	Discussion
	Illustration Principles in Depth-Attenuated Halos
	Case Studies of Application Scenarios
	DTI Fiber Tracts
	Simulated Flows of Fluids or Gases
	Point Data: Elevation and 3D Scanning
	Mathematical Shapes

	Parametrization
	Performance and Limitations of the Technique

	Informal Evaluation
	Conclusion
	Width of the Depth-Attenuated Halos

