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Fig. 1: Coding results from categorizing IEEE VIS paper images according to: visualization types (light blue), their dimensionality
(dark blue), and additional image categories (red). 2D Schematics are the most common type of figure in IEEE VIS publications,
followed by 3D surface/volume renderings.

Abstract—We present and discuss the results of a two-year qualitative analysis of images published in IEEE Visualization (VIS) papers.
Specifically, we derive a typology of 13 visualization image types, coded to distinguish visual designs and several image characteristics.
The categorization process required much more time and was more difficult than we anticipated. The resulting typology and image
analysis may serve a number of purposes: to study the evolution of the community and its research output over time, to facilitate the
categorization of visualization images for the purpose of research or teaching, to identify visual design styles, or to enable progress
towards standardization in visualization. In addition to the typology and image characterization, we provide a dataset of 6,833 tagged
images and an online tool that can be used to explore and analyze the large set of tagged images. The tool and data set enable a
close examination of the diverse visualizations used and how they are published and communicated in our community.

Index Terms—Visualization, classification, images, typology

1 INTRODUCTION

The visualization research space has been studied from a variety of
angles. Some started by considering specific data types (TimeVis [2],
TreeVis [74]), others looked at keywords [47], evaluations [48, 56],
topic modeling [50], interaction [108], or taxonomies of tasks and
activities [3, 27]. Describing and classifying the challenges, artefacts,
research methods, and theories in a research field is a difficult endeavor
but this work is nevertheless very important for a variety of tasks. For
example, a classification of visualization techniques can be extremely
helpful when planning any research activity that requires a systematic
coverage of the space of existing visualization. For example, when de-
veloping a new research method applicable to a variety of visualization
techniques, it is important to test the method and ground the design
on a broad set of techniques or variations of a specific technique [82].
Similarly, when writing an overview article, a textbook, or lecture series
about visualization—classifications can illuminate coverage of tech-
niques, to show the variety of approaches to a specific techniques, or to
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identify aspects that need further attention. When trying to understand
the historical evolution of the visualization field, it may be similarly
useful to systematically consider the types of artefacts and research
produced through the lens of a classification. In all three cases more
broadly, a systematic organization can help to ensure coverage of a
research space, identify outliers, structure discussions, and potentially
even open up venues for future work [60, 77].

While many characterizations of visualization tasks, visualizations,
keywords, or topics exist, what has not been systematically attempted
so far is a bottom-up approach that starts with the visual artefacts pub-
lished, communicated, and discussed in the community. We provide
such a view on our research space and publication practices by sys-
tematically analyzing images published throughout the entire 30 year
history of the IEEE Visualization conference—as the longest running
venue for the publication of novel representation types, the evaluation
of existing techniques, or the development of visualization systems
(among other types of contributions). Specifically, we coded 6,833 fig-
ures from 695 papers published in IEEE VIS (VisWeek) 1990, 1995,
2000, 2005, 2010, 2015, and 2020, a subset of the VIS30K dataset [22].
Our initial goal was to study how visualizations were used to communi-
cate research in the community. Throughout our two-year collaboration
and lively discussions, this goal evolved toward establishing a broader
typology of the visualizations we saw as well as a description of how
these visualizations are used in visualization research publications. Our
discussions focused on the visual appearance of these visualizations
without consulting the captions and reading the authors’ intents in the
papers. We discussed whether the images showcased a certain type of



visual design, a system or GUI element, or were schematics meant to
explain workflows or processes. Our final code set describes 13 image
types and their perceived dimensions (Fig. 1). We find that the largest
categories were schematic representations, surface-based techniques
& volumes, line-based-technique, and GUIs. Together, these top four
categories account for 73% (4,986 out of 6,833) of the coded images.

By relying on our experience in visualization research, teaching, and
practice we initially assumed the coding process would be relatively
straightforward. Having studied visual encoding principles as put
forward by Bertin [8], MacKinlay [62], and others, the design space of
visualizations, in theory, seemed more or less clearly defined. However,
it quickly became clear that visual designs “in the wild” (even with our
constraint to the academic visualization community) display a great
variety and demonstrate tremendous creativity, to the extent that the
complexity of coding these charts is a major challenge of our work.
There are, for instance, no standard definitions of many visual designs,
e. g., glyphs and grid-based techniques, that are specific enough to
foster a clear-cut coding process of visualization images. Given our
shared background in visualization, we were also surprised about the
large role that individual differences and interpretations played. And
for some images, even after intense discussions, their categorization
remained ambiguous and uncertain. In summary, we contribute:

• a novel typology of visualization images consisting of 13 cate-
gories,

• the coding dataset and quantitative analysis of 6,833 IEEE VIS
(VisWeek) images based on the typology,

• a discussion of our process, failed attempts, and coding ambigui-
ties in deriving the typology, and

• an open web-based tool to explore the image dataset.

2 RELATED WORK

Past work on visualization categorizations is related to our own, as well
as work that analyzes research figures. We review these areas next.

2.1 Categorization as an Analogy of “What is it like?” As-
sociation: A Brief History

Categorization represents any grouping based on similarity [6], origi-
nated from Plato in philosophy [36]. Wittengenstein [105] argues that
people are fluid about categories: different people may give different
answers and the same person may give us at different time different
answers. As a result, a top-down categorization that draws clear bound-
aries of shared properties to those of other categories, is too strict
to represent how people understand categories. Rosch [80] later up-
dated the notation of categorization using a data-driven solution where
categories become prototypes from bottom-up clustering of similar in-
stances. These prototypes can get clustered again to form a hierarchical
categorization. Psychologists (e. g., Medin and Schaffer [67], Nosof-
sky [73], and Krushki [55]) have gone further and argue for what they
call the example-based theory of categorization, where humans store
instances and examples of these; similarities and differences among
which let us see and learn associations between these examples. For
things closer together, they look like a clustering of learned examples
and belong to the same category. Human observations of similarity
depend on high-order structure [98] (thus cannot be represented by
low-level features [110]), and are context-dependent [66] (thus categor-
ical boundaries can thus be fuzzy). In this work we also stepped away
from the top-down categorization paradigm and tried to categorize
visualizations as a bottom-up association of what we see from these
images.

2.2 Visualization Categorizations
Images have been categorized based on how they are constructed, rather
than how they are seen by viewers. Textbooks, in particular, often rely
on categorizations to structure their content [78]. While early books
such as Brinton’s [14] were collections of graphical representations in
use, modern textbooks regularly use one of a few structures:

Focus on construction rules for design purposes. A first and highly
influential approach to characterizing visual designs was Bertin’s visual
semiotics [8]. He discussed the fundamental building blocks of images

that are modified by visual variables (visual channels), which encode
data. Similar in spirit, several proposals have been made to describe
visual designs through the lens of a visual language with a set of syntac-
tic rules. Examples include Wilkinson’s Grammar of Graphics [104],
Engelhardt’s Language of Graphics [94], or Mackinlay’s automatic
design [62]. Applying rules formulated in a visual language can yield
a broad range of visualization designs [69] and several visualization
tools and libraries are based on them, e. g., Tableau [63], D3 [13], or
Vega-lite [81]. Others, such as Tufte’s Envisioning Information [90]
differentiate techniques by higher-level construction rules such as small
multiples, or principles such as layering and separation.

What unites these approaches is that they attempt to describe how to
construct a visualization but do not focus on what the end-product of the
construction looks like. Different sets of rules may lead to images that
look very similar. Intriguingly, these construction rules cannot name
a category nor tell apart visualization categories. For example, we
cannot use length, area, and orientation to differentiate a bar chart from
a pie chart. In another words, humans cannot always rely on abstract
definitions or shared drawing entities to predict categories [80, 105].
We used an inverse approach in that we took existing images and
attempted to describe their visual appearance. By using this approach,
our characterization incorporates our assessment of what is important
in a visualization; this assessment is certainly related to encoding
of marks and channels without necessarily considering what data is
encoded. This approach enables us to generate high-level categories
beyond marks and channels.

Focus on data types. Many researchers have categorized visualiza-
tion techniques based on the type of data they show. This approach
makes sense as, in a typical iterative visualization design process, data
are systematically mapped, winnowed, and refined to visual encod-
ing [82]. Ward et al. [101], e. g., categorize visualization techniques for
spatial data, geospatial data, time-oriented data, multivariate data, trees,
graphs, and networks, and text and document visualizations. Heer et
al.’s visualization zoo [40] classifies time series, statistical data, maps,
hierarchies, and networks. Brodlie [15, pp. 40ff] classifies techniques
into those for point, scalar, vector, and tensor data. Similar to the first
approach, these categorizations focus on how to construct a visualiza-
tion and do not focus on how to describe the visual appearance of an
image. Compared to these characterizations where data is input and
visual images are the output, we attempt to characterize visualizations
without necessarily knowing the characteristics of the data that led to
the final image. For example, we make no distinction between a line
chart that shows temporal data and one that shows, e. g., a physical mea-
surement such as voltage that was sampled in some arbitrary sequence
but plotted in a meaningful way from low to high values.

Focus on task and analysis question types. Another set of text-
books introduces visualizations by linking representation and analysis
tasks/questions. Fisher and Meyer [33], for example, group techniques
such as histograms and boxplots under the analysis question of “show-
ing how data is distributed.” Maciejewski [61] also takes this approach
in his grouping of techniques. Again, a focus on analysis questions con-
siders a-priori criteria to choose and categorize visualization techniques
in the same vein as data and construction rules do. As a consequence,
visually similar techniques are considered in separate categories; for
example, Fisher and Meyer [33] categorize bar charts under “visualiza-
tions that show how groups differ” and histograms under “visualizations
that show how data is distributed.” Again, our approach attempts to
uniquely identify images from the standpoint of having been created
already, without necessarily knowing what data they show, how they
have been constructed, or what tasks they were meant to serve. This
allows us to group visually similar techniques together and only later
to consider other aspects in which they differ.

Most categories are functional. We are certainly not the first to
realize the feature differences between what we design and what we
see. The computer vision community has realized that many descrip-
tors (e. g., Canny edge detector [17], orientation map [64], and HOG
algorithms [30]) use features that do not align with what humans see,
and therefore cause some computer vision algorithms to fail. Recent
artificial intelligence algorithms are better able to assign categories



to items because the categories are treated as a continuous space of
related high-level concepts [20, 65]. In the space of artificial intelli-
gence categorization, our results are thus useful for future grouping
and classifying new visualization techniques (akin to ImageNet in com-
puter vision [54]). Nonetheless, we also show the diversity of the data:
even under a single category. Our collection combines various variable
appearances, spatial arrangements, appearances (color), compositions,
and viewpoints.

2.3 The Role of Graphs in Scientific Communication
Though our perspectives on how to categorize visualizations is dif-
ferent from that of many textbooks, our method of studying figures
in evaluating scientific advances has been used before. Latour [57]
laid out graph features that make them essentially a pervasive form
of visualization and a specialized vocabulary for transforming and an-
alyzing data to represent scientific findings. The pervasiveness and
centrality of scientific figures led Latour to conclude that scientists
exhibit a “graphical obsession” and indeed to suggest that the use of
graphs distinguishes scientific domains. In the visualization domain,
our work is most closely related to Borkin et al.’s [12] work towards
studying what makes images memorable. In that work, the authors
suggested a taxonomy of techniques that is a mix of encoding (area,
bar, . . . ), data (network, tree, . . . ), and analysis-focused (distribution)
categories. The authors asked students to annotate 2,070 single-panel
visualizations using their taxonomy and derived an annotated set of
images. Our work differs, however, in several aspects from Borkin et
al.’s: we describe and discuss the process of deriving our categorization
and the inherent difficulties, we included images with multiple visual
encodings, we focus on visualization articles as a source and do not
study memorability as a final goal of our work. Our approach is one
of the few that focuses on images only. Visuals are one of the most
essential outputs from the visualization community (as opposed to data
or tasks). We consider them to be very important since they are at
the center of our work. Our project thus facilitates the classification,
exploration, and analysis of our own fundamental content through a
new image-centric lens.

3 THE IMAGE CODING PROCESS

Our image coding is an ambitious project. We list a set of high-level
goals we strive for and the process to reach these goals. We begin our
discussion with a temporal overview of our process to classify images
and our systematic methodology. Our process became one of open and
axial coding [18] while we continuously updated, drew connections
between, and refined our codes as we analyzed more data.

3.1 Goals of our Image Coding
To summarize our previous discussion, our categorization of images
according to “what we see” has four concrete goals:

Provide an alternative viewpoint: Rather than categorizing vi-
sual designs from underlying data, construction rules, or functions we
provide a categorization based on the visual content of images alone.
This approach offers a new viewpoint that can serve to compare and
complement other categorizations and puts the focus on the diversity
of aesthetics and other visual properties within a single category.

Collect experiences concerning the difficulties of categorizing
visualization images: We document our multi-stage process to derive
a relatively high-level categorization of images and describe inherent
uncertainty, failed attempts, and current limitations. We also describe
how difficult it can be to understand images that have been taken out of
the context of the text and captions.

Provide a small set of broad categories: We purposefully wanted to
create a classification with only a few categories that would remain man-
ageable given the detailed and often complex types of images produced
in the Visualization community. These categories needed to capture the
diversity of design approaches, rendering methods, algorithms, or view
point selections within a category.

Provide data and explore the use of images in the visualization
community. This exploration can give valuable insight in the changing
practices of communication and research in our community.

3.2 Visualization Image Data Source

We developed our classification using the VIS30K [22] collection of
images and its associated VisPubData [46] meta data. This dataset
largely represents visualization as a field because it contains every
visualization image published at IEEE VIS (including Visual Analytics,
Information Visualization, and Scientific Visualization) since 1990.
Based on our pilot studies (described below) it became clear that we
would not be able to classify all 30,000 images. Thus we chose to code
images in five-year intervals for our primary study, starting with 1990
and up until 2020 (inclusive). This led to a set of 6,833 figures from
695 IEEE VisWeek/VIS full papers (including case studies), which we
analyzed. In each phase of the work, seven experienced coders, all
co-authors of this manuscript, classified subsets of the images.

3.3 Image Classification Process

Included in our process description are the approximate start dates and
duration of each phase.

Phase 1—Initial image classification based on keywords (circa
Mar. 2020 start, approx. 1 month): We began our work with a focus
on visualization techniques where we considered that technique names
such as treemaps, parallel coordinates, etc. could well describe the
content of the images we were analyzing. To improve objectivity and
reduce bias, we wanted to tag images with the most common technique
names used in the community as extracted from author keywords used
for VIS papers. We ranked the author keywords extracted in prior
work [47] to derive the initial top-21 keywords for specific techniques.
In addition to the encoding techniques used in each image, we added
two code categories that seemed important to be able to describe visual-
izations and communication practices in the community: the rendering
dimensionality (i. e., 2D or 3D) and the functional purposes of creating
the image (i. e., the reason why the authors created each image, for
example: illustration of a visualization technique, experiment results,
or screenshot of GUI.) See Appendix B for the initial keyword list and
functions. The initial code set, thus, included 28 codes.

Phase 2—Initial pilot coding (circa Apr. 2020 start, approx. 2
months): To test our initial code set, each coder categorized visual-
ization images from the year 2006. Visualization images from the
year 2006 were used in our pilot study only. We subsequently intro-
duced new technique codes by merging techniques that had been tagged
“other,” and added “schematic diagram” to the list of image purposes,
which resulted in 22 technique codes. We discussed the definition of
these terms and gave all coders written instructions and example images
from each category. Each figure was labeled initially by one coder in
this stage and validated by a second coder. We based the validation
assignment of the second coder on their respective expertise, to verify
all images included and excluded in a specific category (e. g., volume
rendering was coded and verified by experts with a sustained track
record in volume graphics).With these steps we removed false positives,
avoided false negatives, and ensured image classification consistency.

Phase 3—Consolidation: Seeing by association and analogies
(circa Jun. 2020 start, approx. 5 months): In Phase 3, we discussed
what worked well and what did not, and why. The codes focused on
visualization techniques quickly became difficult to apply as the number
of techniques grew increasingly large. We had difficulty defining when
a technique should receive its own code or be covered under “other.”
Also, some technique names were different but pointed to visually
similar designs. Point clouds and 3D scatterplots, e. g., both render
points according to underlying coordinates in 3D space, with the main
exception that scatterplots typically include reference structures such
as axes and gridlines. These conflicts in turn lead us to re-frame our
code set using higher-level (more general) visualization type codes.

We decided to focus on describing the main perceptual (or visual)
characteristic of a given visualization and to create codes that enable
the viewer to distinguish graphical similarities and differences. We thus
re-grouped and merged the codes sharing similar visual characteristics
into a more general code. We put isosurface, e. g., into a more gen-
eral surface-based techniques category and grouped point clouds and
scatterplots into a more abstract point-based techniques category.



Table 1: The main visualization type, function, and dimensionality codes used in our review. Additional codes not listed here were “I cannot tell”
to label images that had unclear techniques or dimensionalities.

Visualization Type Codes Description Examples

(1) Generalized Bar
Representations

Graphs that represent data with rectangular bars whose heights or lengths
are proportional to the values they represent.

bar charts, stacked bar charts, histograms, box
plots, sunburst diagrams.

(2) Point-based Representations Representations that use point marks to represent data samples scatterplots (2D/3D), point clouds, dot plots,
bubble charts.

(3) Line-based Representations Representations in which lines, edges, or curves represent data samples.
Lines can depict surface features or data values.

line charts, parallel coordinates, contour lines,
radar/spider charts, streamlines, or tensor field
lines.

(4) Node-link Trees/Graphs,
Networks, Meshes

Representations using points for nodes/points and explicit connections to
convey relationships between data values

node-link diagrams, node-link trees, node-link
graphs, meshes, arc diagrams, sankey diagrams.

(5) Generalized Area
Representations

Representations with a focus on areas of 2D space or 2D surfaces
including sub-sets of these surfaces. Areas can be geographical regions or
polygons whose size or shape represents abstract data.

(stacked) area chart, area chart, streamgraph,
ThemeRiver, violin plot, cartograms, rideline
chart, voronoi diagram, treemaps, pie chart.

(6) Surface-based
Representations and

Volumes

Representations of the inner and/or outer features and/or boundaries of a
continuous spatial phenomenon or object in 3D physical space or 4D
space-time, or slices thereof.

terrains, isosurfaces, stream surfaces, volume
rendering using transfer functions, slices
through a volume (e. g., X-ray, CT slice).

(7) Generalized Matrix / Grid Representations that position data in a discrete grid structure. The grid can
vary in resolution, is typically rectilinear but can use other shapes such as
hexagonal grids etc.,

network matrices, discrete density maps, scarf
or strip plots.

(8) Continuous Pattern-based
Representations

Representations of continuous data along planes and surfaces, typically for
vector and tensor fields. Representations frequently use texture-mapped
imagery to describe variations in orientations, directions, or flow.

Line Integral Convolution (LIC), Spot Noise,
Image-Space Advection (ISA), Image-Based
Flow Visualization (IBFV)

(9) Continuous color-based
Representations

Representations that use a primary encoding where the hue or brightness
or saturation encodes quantitative values on a continuous surface.
Color-mapping is systematic, thus is not as a result of illumination or an
author-chosen categorical representation.

pixel heatmaps, color-mapped surfaces.

(10) Glyph-based
Representations

Multiple small independent visual representations that depict multiple
attributes (dimensions) of a data record. Placement is usually meaningful
and typically multiple glyphs are displayed for comparison.

Star glyphs, 3D glyphs, Chernoff faces, vector
field glyphs

(11) Text-based Representations Representations of data (usually text itself) that use varying properties of
letters and words such as font size, color, width, style, type to encode data.

tag clouds, word trees, parallel tag clouds,
typomaps.

Function Codes Description Examples

A. GUI Screenshots or GUI
Photos

Images that show a system or user interface. a photograph of a person sitting in front of a
given system, a figure containing GUI features
such as windows, icons, cursor, and pointers
(WIMP), or non-WIMP VR/AR interfaces.

B. Schematic Representations,
Concept Illustrations

Often simplified representations showing the appearance, structure, or
logic of a process or concept.

workflow diagrams, algorithm diagrams,
sketches.

Dimensionality Codes Description Examples

2D Flat representations, no specific depth codes added to renditions. Most statistical charts, most maps, . . .

3D Representation with specific depth cues that achieve the perception of 3D
(shading, perspective, lighting, . . . ).

Most volume renderings, . . .

This consolidation process resulted in 12 high-level visualization
type codes that ultimately became part of our final set shown in Ta-
ble 1. We reduced our image function category into just two codes:
GUI (Screenshots) and Schematics as these were visually identifiable
without requiring knowledge of the underlying data. Both categories
represent the codes from other encoding categories from Phase 1, which
did not appear in our technique-focused codes. Given the challenges to
code the visualization images we had encountered, we also decided to
collect subjective ratings of difficulty (easy, neutral, hard).

Phase 4—2nd Pilot Visualization Typology (circa Dec. 2020 start,
approx. 3 months): In the first two months after having arrived at the
new code set, we discussed, debated, and coded two sets of 50 (i. e.,
100 in total) randomly chosen images from our seven-year target image
data set to calibrate our collective understanding. During this exercise
we clarified code definitions and discussed ambiguities. We assigned
these 100 images to all of us for quality control as well to align our
decisions and discuss potential pitfalls with our new code set. We used
a dedicated web-based coding tool (Appendix C) for the coding in this

phase. At the end of this phase, our project was already one year old.
We had almost weekly meetings and discussions throughout this time
and were now confident that we had largely reached consensus on the
general typology shown as the top 13 codes (except color) of Table 1.

Phase 5—Result Coding and Validation (circa Apr. 2021 start, ap-
prox. 6 months): In this phase we coded all 6,833 images in our chosen
dataset based on the refined definitions and characterizations, using
largely the same coding tool as before (Appendix C). We used the 12
visualization type codes, 2 function codes (GUI, Schematics), 2 codes
for the dimensionality (2D vs. 3D), and 3 difficulty codes (easy, neutral,
hard) that meant to capture how hard the categorization had been for the
coder. We first looked at the function of an image. If the image showed
either a schematic or a GUI we assigned the respective code. If not, the
function was implicitly considered to be a “visualization example” and
we proceeded to assigning a visualization type code. Both categories
shared an “I cannot tell” code that was assigned when neither one of
the two explicit functions nor a visualization type could be assigned.
In addition, coders could freely add new codes for visualization or



Fig. 2: The x-value represents the proportion of applied image codes
in a category relative to the total 4,214 visualization images (after
excluding the pure schematic and GUI images). We can see that the
most common visualization types were “surface-based representations
and volumes” and “line-based representations”.

(a) (b)

Fig. 3: Temporal overview of the proportions of visualization types (a)
and dimensions (b). We can see that “surface-based representations
and volumes” (Surface) become a lot less common after 2005 while at
the same time “point-based representations”(Point) and “generalized
bar representations” (Bar) rise.

image types when they found something new that was not covered
by the existing codes. For the dimensionality we also added a code
called “I cannot tell” which could be checked when coders were unsure
whether the visualization was a 2D or 3D rendering. Coders could
assign multiple types and dimensionalities to one image which was
necessary because many images showed more than one visual design.

In the coding process, we also recoded the 100 images we had
previously pilot-coded during Phase 4. To ensure high-quality results
and more clearly capture potential difficulties in applying the codes
two coders were randomly assigned to each image. This phase was
lengthy and laborious due the number of images we classified. We met
regularly to resolve further questions that arose during coding and to
augment or clarify code descriptions further.

Phase 6—Verification (circa Oct. 2021 start, approx. 6 months):
In the final phase, the two coders assigned to each image worked
to reach an agreement when their applied codes did not match. For
this purpose we developed two more web-based visual interfaces that
focused on conflict resolution and giving and overview of applied
codes (Appendix C). We then filtered the results such that only the
inconsistently coded images were shown, and we used this process
to resolve all disagreements. This verification was also a lengthy
and laborious process requiring consistent discussions. We discussed
difficult and ambiguous cases as a team every week until we could agree
on a solution (we describe some of the most difficult classifications
in more detail in Sect. 5). As part of this discussion we added a 13th

visualization type, continuous color-based encodings, listed as point
(9) in Table 1. We also refined our definitions further. Consequently,
we went through all previously coded images again to check if they
had to be re-coded for consistency, and resolved potential resulting
disagreements as part of our discussion process.

Fig. 4: The initial consistency of visualization type codes applied to
images. We can see that the coders had least consistency related to
“glyph-based representations”.

4 RESULTS

In this section, we describe the results of our work after the completion
of Phase 6 discussed in the previous section. We summarize the coding
results based on the codes in each coding category.

Our coding process applied 6,299 visualization type codes, 2,619
function codes, 7,181 2D/3D dimensionality codes, and 13,666 dif-
ficulty codes to the 6,833 images. Many images included multiple
types and dimensionality codes. Fig. 2–left shows the distribution of
visualization type in relation to the difficulty ratings given by coders
for each image. The right shows the distribution of dimensionalities per
visualization type. Fig. 3 provides a historic overview of the spread of
visualization type and dimensions in a given year. After our final coding
pass by the end of Phase 5, we calculated the consistency between the
pair of coders that had coded each image. The resulting consistency
depended strongly on the visualization type of the image (Fig. 4).

4.1 Visualization Types: Towards a Visualization Typology
In this section, we describe canonical examples for each visualization
type. Later, in Sect. 5, we cover the main difficulties we encountered
working with this typology. All images are referenced from left to right.

4.1.1 Generalized Bar Representations
As generalized bar charts we coded visualizations that represent data
with straight or curved bars whose heights or lengths seemed propor-
tional to represented data values. Canonical examples of generalized
bars are: (stacked/divided/regular) bar charts, histograms, radial bar
charts, and donut charts. Generalized bar charts were the third most
common visualization type among the images we coded and have
gained in proportion in the later years we coded. Coders found them
mostly easy to identify and the consistency between coders was among
the highest at 67%. 3D generalized bar charts were extremely rare and
only sometimes appeared either in the early years we coded or more
recently to visualize data on 3D surfaces such as a globe. Canonical
examples of generalized bar charts taken from [103], [107], [53]:

4.1.2 Point-based Representations
Point-based representations typically use dots or circles with a small
radius to encode data, however, we did not specify specific primitive
shapes in our definition. Similar to Bertin [8], we considered point-
based representation to encode point locations in a 2D or 3D space.
Point marks could be small circles but also 3D spheres and sometimes
other shapes like triangles, stars, etc. Canonical examples of visualiza-
tion techniques of this type are scatterplots, (volumetric) point clouds,
or dot plots. Point-based representations were the fourth most common
visualization type according to our coding. Coders found identifying
them slightly harder than length-based encodings and the overall consis-
tency of coders was 57%. Surprisingly, we saw only a small percentage



of 3D point-based representations, perhaps due to large amount of work
on scatterplots or using scatterplot-like representations of, for example,
dimensionality reduction or clustering results. Canonical examples of
point-based representations taken from [76], [106], [91]:

4.1.3 Line-based Representations
Lines, edges, and curves were the second most common representa-
tions of data according to our codes. Line-based visualization can
depict surface features or data values. The lines and edges used in
these visualizations could be straight or curved. Canonical line-based
visualization techniques are line charts, parallel coordinates, contour
lines, radar/spider charts, streamlines, or tensor field lines. We did not
code lines that delineated areas as line-based representations.

About a quarter (28.1%) of line-based representations were rendered
in 3D. There was also a sizable proportion of 12% of images where the
coders could not tell whether a line chart was 3D or 2D due to a lack of
clear depth cues. Most line charts, however, were the typical 2D line
charts that most often represent temporal data. Images of canonical
line-based representations taken from [4], [86], [93]:

4.1.4 Node-link Trees/Graphs, Networks, Meshes
Representations of this type depict points and explicit connections to
convey relationships between data values. Node-link relationships can
be found in trees, graphs, networks, and meshes. Node positions can
be given, e. g., geospatial locations, or be coded in the data (e. g., pro-
jections). Connections can be continuous, e. g., a Reeb graph, as the
topological structure is given by showing continuous functions in space,
or discrete, e. g., edges in a tree. Representations of this type were
the 5th most common representation type and their representation has
stayed relatively stable at roughly 5–10% of images per year. Most
codes were applied to 2D images, but 27% of the codes in this cate-
gory belonged to images in 3D. Canonical “Node-link trees/graphs,
networks, meshes” representations taken from [75], [109], [9]:

4.1.5 Generalized Area Representations
Generalized area charts are representations with a focus on areas of 2D
space or 2D surfaces, including sub-sets of these surfaces. Areas can
be geographical regions or polygons whose size or shape represents
abstract data. Areas often feature explicit boundaries and, within, are
filled with categorical colors or use contrast in luminance and shading
to encode attributes of the areas. Common examples of generalized
area charts are regular area charts, treemaps, cartograms, choropleth
maps, pie charts, or violin plots. Generalized area charts were the
6th most common type of representation type in the images we coded.
Most areas were part of surfaces rendered in 2D. Over the years the
proportion of images with areas increased by 1–2% every 5 years up to
just under 10% in recent years. Canonical examples of “generalized
area representations” taken from [16], [83], [79]:

4.1.6 Surface-based Representations and Volumes

Surfaces and volumes represent the inner and/or outer features and/or
boundaries of a continuous spatial phenomenon or object in 3D physi-
cal space, 4D space-time, or slices thereof. Surfaces typically represent
the inner and outer boundaries of a given 3D scalar field, e. g., isosur-
faces [38], or integral surfaces in vector fields, e. g., stream ribbons and
stream surfaces [28]. Volume rendering is a set of dedicated techniques
that depict sub-sets of volume data, usually with an element of thickness
(as opposed to infinitely thin surfaces) [39]. Frequent characteristics
of images in this category include: the use of semi-transparency, the
application of lighting and shading techniques, perspective or parallel
projection, and the addition of other 3D and depth cues. Volume ren-
dering has been one of the most important areas of Visualization in the
early years of the conference [47]. As such, it is perhaps not surprising
that surface and volume representations were the most common tech-
niques in our dataset. It is also the only representation technique with
primarily 3D renderings. The few 2D renderings we found included
slices of volumes such as X-ray or CT slices. Similar to what we saw
in prior work on keywords [47], the number of surface and volume
renderings has decreased drastically since 2005 from around 25–30%
of all images to currently around 15%. Canonical examples of surface
and volume-based representations taken from [43], [88], [71]:

4.1.7 Generalized Matrix or Grid

Generalized matrices and grids are representations that position data in
a discrete grid structure. The grid can vary in resolution, is typically
rectilinear but can use other shapes such as hexagonal grids etc. This
representation type includes figures where the underlying grid is part
of the data structure, but does not include figures where the underlying
grid is merely used as a convenient arrangement of sub-sets of the
data (as in small-multiples and scatterplot matrices). Other elements
such as color or glyphs can appear at these discrete grid positions
(e. g., grid-based vector field visualization). Under 10% of all images
contained generalized matrices/grids and that consistently across the
years. Of these, 89% were 2D grids/matrices and 4.2% were 3D (the
rest was “I cannot tell”). Common visualization techniques in this
representation type are discrete heatmaps, scarf/strip plots, space-time
cubes, or matrix-based network visualizations. Canonical examples of
this visualization type taken from [44], [72], [35], [68]:

4.1.8 Continuous Pattern-based Representations

In general, continuous pattern-based representations incorporate images
that focus on representing continuous data variation along planes and
surfaces (akin to a “texture”). This category differentiates itself from
“continuous color-based representations” (see next) by using repetitive
patterns or structures in the texture mapped to data. Frequent character-
istics of representations of this type are smooth, high-resolution, and
highly detailed variations/changes across the data. Representations of
simulated flow are common. Typical visualization techniques include:
Line Integral Convolution (LIC), Spot Noise, Image-Space Advection
(ISA), or Image-Based Flow Visualization (IBFV). Continuous pattern-
based representations were among the most rare types in our coding
with under 2.9% of all images in our dataset. Most patterns were used
on surfaces represented in 2D, but some also applied to 3D. Canonical
examples of this visualization type taken from [35], [92], [51]:



4.1.9 Continuous Color-based Representations

Continuous Color-based Representations use a primary color (hue,
brightness, and/or saturation) encoding across a continuous surface
or volume. We added this visualization type late during the verifi-
cation phase (Phase 6 in Sect. 3) because many of our discussions
arose around how to code heatmaps (e. g., right-most image below).
Discrete heatmaps were clearly of Matrix/Grid type, but other similar
color-based encodings applied in a continuous way were not. The main
characteristics of continuous color-based representations are the promi-
nent encoding of data through color at high resolution down to the
individual pixel level and smooth transitions between varying colors.

A prominent technique in this category are representations featuring
a transfer function. Conceptually, a transfer function is a colormap
with an added opacity encoding. Other examples include continuous
heatmaps and pixel-based encodings. Color-based encodings are less
common in our data but this can be partly attributed to the fact that
the code only appeared in the final verification phase and that some
images might have been missed, this is why we do not provide a
consistency score for this code. Most continuous color-based encodings
were applied to surfaces rendered in 2D. Canonical examples of this
visualization type from left to right taken from [26], [31], [95], [32]:

4.1.10 Glyph-based Representations

We coded glyphs when we saw multiple small independent visual rep-
resentations that depicted multiple attributes (dimensions) of a data
record. These glyphs often used multiple geometric primitives to en-
code data. When multiple properties of a single mark encoded data, we
also considered them as glyphs especially when we saw multiple glyphs
displayed for comparison and/or with meaningful placement in space.
For example, 3D glyphs, often were made up of one mark such as a
small 3D cuboid where height, width, and depth could encode different
data dimensions. In much of the visualization literature these marks
would be named a glyph and we retained this usage of the term. Com-
mon glyph-based techniques in this category were star glyphs , 3D
tensor glyphs , Chernoff faces , or vector field arrows . Overall,
glyph-based encodings were not particularly frequent (<5% of all im-
ages contained glyphs) and we saw only slightly more glyphs rendered
in 2D than 3D. Glyphs, however, were difficult to identify and our con-
sistency for this visualization type was initially only 35%. Canonical
examples of this visualization type taken from [29], [41], [42], [35]:

4.1.11 Text-based Representations

Text-based representations encode data (usually text itself) using vary-
ing properties of letters and words such as font size, color, width, style,
or type. Common visualization techniques for this representation type
are tag clouds, word trees, or typomaps. We did not code images where
text was used only for labeling and annotation or where text was the
underlying data source but the representation did not use text properties
to encode the text. Text-based representations were the most rare in our
coding. All text-based representations were rendered in 2D. The initial
coding consistency was low at 39% primarily because some coders
initially also coded representation of text as a data source. Example
images for this type taken from [59], [97], [1]:

4.2 Visualization Functions

All images tagged with a visualization type code were implicitly as-
signed the function to “showcase a visualization technique.” This
function was by far the most common. In addition to this implicit
function we coded screenshots or images of graphical user interfaces
(GUIs) and schematic representations. For images with both of these
functions we did not assign additional individual visualization types.

4.2.1 GUI (Screenshots)/User Interface Depiction

Images tagged with this code were either screenshots or photos of a
system interface. GUIs required the presence of window components
or other UI widgets, such as buttons, sliders, boxes, scroll bars, pointers
(e. g., the hand cursor showing interaction), etc. Non-WIMP interfaces
(e. g., for VR or touch-based applications) were indicated by, e. g., a
hand/finger touching a surface or clearly visible interface hardware
such as a tablet, a tabletop display, or other types of hardware. There
are 825 GUI images in total representing about 12% of all images.
The proportions of the GUI images over time are also relatively stable
over the years. Only about 13% of these are 3D. Coders found identi-
fying them was easy and the overall consistency of coders was 70%.
Canonical examples for this type taken from [7], [25], [109]:

4.2.2 Schematic Representation and Concept Illustrations

A schematic or concept illustration is an often simplified representation
showing the appearance, structure, or logic of a process or concept.
Typical examples include flowcharts to illustrate an algorithm, process
diagrams, or sketches. Schematics and illustrations are common in
research papers, not just in visualization papers. We coded 1,919
schematic or concept illustration representations. This category is most
common and among these, 79.3% were 2D. Canonical examples of this
visualization type taken from [58], [49], [45]:

4.3 Dimensionality: 2D and 3D

Another category we coded concerned the spatial dimensionality of the
rendering of visualizations, GUIs, and schematics. A flat representation
on a 2D plane without perceived depth was labeled as 2D. Those images
that appeared to be in 3D (or volumetric) space were classified as 3D.
To classify an image as 3D we looked for depth cues such as occlusion,
lighting and shading, parallel and perspective projection, rotation, or
any other depth cues. We also required a continuous depth with smooth
transitions between depth values. In other words, we did not generally
code images as 3D when the content resided in just one or two 2D
planes, e. g., an artificial discrete depth. As we shall see in Sect. 5,
even this apparently simple exercise turned out to be non-trivial for
many images due to the presence or absence of a mixture of depth cues.
Two-dimensional representations became more common than 3D after
2005, perhaps due to the new VAST conference (Fig. 3b). It is also
not surprising that 3D representations were used more broadly for “sur-
face-based representations and volumes” (Fig. 2). For the visualization
types “surface-based representations and volumes” and “line-based
representations” we observed a decrease of 3D use over time.



5 CHALLENGES ON JUDGING VISUALIZATION TYPES

While the previous section might seem relatively straightforward to
apply, ambiguous cases were much more common than we thought.
In this section we focus on discussing our most important challenges
during the coding process.

5.1 Choosing the Right Level & Members for our Typology
During out discussions we made several failed attempts at deriving a
typology that we could apply to images without knowing details about
the data they represented or what construction rules led to them.

Bertin’s marks and channels as inspiration. One of our first
attempts was to use Bertin’s semiology of graphics and in particular
his marks and visual variables for describing visualizations [8]. Using
this approach resulted in numerous (low-level) codes per image that
together did not allow us to meaningfully describe what we saw. For
example, a scatterplot would be coded as point marks with a position
encoding (visual variable). What we wanted to establish were instead
higher-level categories that would include both the graphical primitives
used and the coordinate system. Still, Bertin’s definition of visual
variables and marks provided inspiration that we see in the naming of
several of our visualization types. For example, we developed a more
general “ point-based representations” category that covers scatterplot-
like images. In this category, the visual mark of a point would be
dominant, perceptually.

Visualization Techniques as a Typology? Ward once said “I’ll
Know it When I See it” [99]. We rely on our observations to help
us derive knowledge about data even when we do not know what the
data is in detail. Yet, our second failed attempt at arriving a typology
began from trying to identify dedicated visualization techniques in the
images we saw. We wanted to characterize the “output space”, the
result space of encoding techniques. However, different data encoding
techniques could result in similar visuals while the identification of
some techniques required knowing the data that was being visualized.
For instance, timeline visualizations could only be identified if the axis
labels were clearly pointing out temporal data. We later completely
abandoned the approach to use visualization techniques for building a
typology so that we could focus on what the data representation actually
looked like. What we retained from this failed attempt, however, was
a focus on the central encoding technique. We intentionally chose not
code legends, labels, and embellishments etc.

Is “continuous color-based encoding” a separate type? Several
of our visualization types make reference to Bertin’s visual channels
position and size. For example grid-based encodings rely on specific
positions for information layout. Point-, bar-, and area-based repre-
sentations are distinguished in terms of how size encodes information.
Point-based encodings primarily reference a position, bar- encodings
a length, and area-based encodings a two-dimensional size. Despite
the fact that properties of color such as hue, saturation, and luminance
are frequently used to encode data as well, we did not have a dedicated
visualization type for color-based encodings. Instead we initially coded
most continuous and discrete heat-map type encodings under “general-
ized matrix / grid” with the argument that these encodings are applied
on pixel grids. During Phase 6 of our codings, many discussions cen-
tered around the question of when a continous color-based encoding
should be coded as a grid - especially when it did not look at all like
a grid. For example, when continuous colorscale were applied to 3D
geometries such as streamlines, the matrix/grid encoding no longer
seemed appropriate. Hence, after many discussions, we decided to
create a distinct category to recognise the use of continuous colormaps.

5.2 General Coding Ambiguity
Many of the challenges with our typology of visualization types
stemmed from ambiguities in how we should apply the code set we
developed. Here, we discuss the most important of these challenges.

Surfaces and volume rendering. In an early visualization-type
code set we had included surface and volume renderings as two sepa-
rate codes. Several of us, however, found it very challenging to discern
the differences between some volume and surface representation. For
example, volume rendering may add thickness but it can also depict

(a) Schematic. (b) Schematic.

Fig. 5: Challenging cases of coding “schematic representations and
concept illustrations”. (a) Is this a glyph-based or schematic repre-
sentation? (b) We choose not to code the visualization type inside
“schematic representations and concept illustrations”. (Images from (a)
Hlawitschka & Scheuermann [42] and (b) Daniels et al. [24]. © IEEE.)

surfaces. We decided that “recognizing” an image type at this level of
detail (e.g., whether surfaces are produced through volume rendering or
surface construction) was not reliable and may not even be important in
terms of describing a figure’s visual content as the underlying algorith-
mic techniques would be transparent to viewers. In machine learning,
visualization, and computer graphics, it has been argued that high-level
concepts directly contribute to reasoning [20, 96]. High-level concepts
remove the specific details of a given technique and focuses on what
all instances of that family of visualization type have in common. We
thus chose a visualization type that is more general, i.e., surface and
volume techniques combined.

Ambiguous Area-based Images. We tried to avoid using data
types in our classification schema because we wanted the focus to be
consistently on images. We originally had a cartographic map category
and choose to remove it because it was both focus on a data type and
a specific technique. Instead, we decided that the depiction of areas
and their relationships was the underlying principle for cartographic
maps but also other related techniques such as area charts, stream
graphs, etc. However, there were exceptions: route maps, for example,
where lines indicate a direct route, were coded separately as networks
because the routes encoded topological relationships. One difficulty
we encountered was the distinction between a “map” (cartographical
map) and a “terrain” (wireframe or surface rendering). Conceptually,
these were very similar. However, using visual appearance as our
guide, map images generally appeared to delineate distinct areas while
terrains showed smooth surfaces with evaluations. Another difficulty
related to maps arose when maps were used as a reference structure for
data representations layered on top, akin to how gridlines are used on
scatterplots. In these cases we had to derive elaborate procedures to be
consisten in our treatment of reference structures. We decided only to
code the underlying maps if the visualization would seem to change in
meaning or message. However, these decisions were very subjective
and resulted in several coding inconsistencies.

Ambiguous Schematic Images. A large number of figures were
schematic representations or concept illustrations. It was often challeng-
ing to differentiate between schematics and a demonstration of a visual
encoding technique. We often had to abandon our initial goal to ignore
what data was encoded to be able to say whether the representation
showed a toy dataset. Toy datasets are common in schematic repre-
sentations, however, the frequent absence of contextual information in
images, such as coordinate axis, labels, or scales made the identification
of toy datasets difficult. We found that many figures simply did not
depict scales which aligns with observations by Cleveland in his review
of graphics in other scientific journals [23].

We also struggled with the use of annotations in figures as an identifi-
cation criteria for schematics. For example, Fig. 5a can be coded either
as glyph-based in that it shows a mathematical tensor or as schematic to
illustrate the authors’ design idea or mathematical function. A majority
of the team members chose to code “schematic representations and
concept illustrations”. Schematic image are often meant to be particu-
larly pedagogical and, thus, include a number of labels and arrows or



(a) Glyph. (b) Glyph.

Fig. 6: Challenging cases of coding “glyph-based representations”. (a)
The ellipsoids in the middle could be high-dimensional with two axes
and thus orientation and magnitude. (b) features starGlyph-like dimen-
sional comparisons and thus is a type of “glyph-based representations”.
(Images from (a) Bian et al. [10] and (b) Fanea et al. [29]. © IEEE.)

other annotations. We experimented with a specific coding guidelines
in which we considered whether after the removal of annotations we
were still seeing an example of a visual encoding type or not—in which
case the image would have been a schematic. As such, we agreed that
the appearance of labels and annotations to explain an image did not
automatically mean the image was a schematic. Our general heuristic
for schematics involved establishing if we saw 1) a well-known (or toy)
dataset, 2) a pedagogical purpose, and 3) the illustration of a concept.

Ambiguous Glyph Cases. Glyphs are notoriously difficult to define.
Recent definitions emphasize different aspects to delineate a glyph from
other encodings. Fuchs et al. defined data glyphs as “data-driven visual
entities, which make use of different visual channels to encode multiple
attribute dimensions” [34]. Borgo et al. [11] followed Ward to define
glyphs as “a visual representation of a piece of data where the attributes
of a graphical entity are depicted by one or more attributes of a data
record” [100]. Munzner’s glyph definition is broad and requires a data
encoding to be assembled out of multiple marks that encode data [69].
For example, each single bar in a stacked bar chart would be a
“microglyph” according to Munzner because it is a composite object
from multiple length-encoding marks. Throughout our coding we used
a mix of the given definitions.

Coding “glyph-based representations” was challenging as glyphs
were often associated with a placement strategy. For example, a focus
on identifying a specific position is a property they share with point-
based techniques. However, most commonly glyphs have been defined
as representations of multi-variate data which by itself would not help
to distinguish glyphs from other visualization types in our typology. A
challenge is deciding when a point or other graphic primitive becomes
a glyph. There is no standard definition to decide after how many data
dimensions a single mark becomes a glyph and when a glyph becomes
a chart. There seems to be, however, a general consensus that a glyph
requires to reach a certain level of complexity to be categorized this
way. However, reaching consensus on the level of complexity is chal-
lenging. We chose to label an image as “glyph-based representations”
if there were multiple representation of data points that represented
both position and additional data dimensions using color, shape, or
other geometric primitives. Fig. 6 illustrates some difficult cases, when
both coders scored the difficulty as “hard”.

5.3 Multiple Encoding Ambiguity
Many images showed multiple visual encodings which is one of the
primary reasons for coding inconsistencies we encountered. We agreed
to code multiple visualization types, if these types were distinctive and
could be perceived clearly. For example, if there were multiple visual
designs layered or nested, that could be distinguished from one another,
we tagged more than one encoding, e.g., node-link + area for Fig. 7a.
We also decided when not to check multiple encodings. For example,
the most frequent representation of a confidence interval includes a bar
whose length represents the interval and a dot to represent the average.
In this case we chose to code the bar as a primary encoding to which
the average was considered and annotation. However, these decisions

(a) Node-link and surface. (b) Line-based, point-based, and surface.

Fig. 7: Challenging multiple coding ambiguity. Here, the two code
signifies different aspects of the data and can be separated to stand
alone. As a result, multiple codes apply. (Images from (a) Suits et
al. [87] and (b) Bach et al. [5]. © IEEE.)

(a) Continuous-color. (b) Continuous-color & glyph. (c) Pattern-based & glyph.

Fig. 8: Challenging multiple coding ambiguity. Here, we did not code
“surface-based representations and volumes” and only chose the primary
code, which differentiates these visualization techniques (Images from
(a) Weiskopf et al. [102] and (b,c) Garcke et al. [35]. © IEEE.)

were difficult, often inconsistent, and error-prone (for example, the dot
for the average is not merely an annotation when confidence intervals
are not symmetric).

Influence of Coder Expertise Though we chose to classify images
without precise knowledge of the underlying data nor the data type (we
purposefully ignored the figure captions), coder expertise often still
played a major role in resolving ambiguities. For some images, we
were familiar with the original papers, but for most cases of ambiguity,
experience may have helped tremendously in understanding the inten-
tion behind images; especially for schematics. In a sense, our decision
of coding an image depended not only on the perceived structure but
also the intended function of the image. For example, scarf plots [84]
were categorized as matrices rather than point-based encodings because
we considered space for lines to be samples along a grid.

6 DISCUSSION

This section presents our reflection on our two-year coding process,
limitations, and future work.

6.1 From Specific Techniques to A General Typology

Essentially, our coding experiment evaluated if visualizations (in aca-
demic publications) can be easily understood and categorized by ex-
perienced researchers. While we started with the intuition of finding
categories based on data, tasks, and low-level encoding principles (char-
acterization of the “input space”), we ended up scraping this and came
up with a typology of the result or output space of images. Some of the
original categories survived (point-based, line-based, and generalized
area; surface-based and text-based; as well as node-link and glyph)
and further new ones have emerged (bar representations, matrix/grid,
continuous patterns, continuous color). Our typology also combines
constructive features (low-level design space construction elements)
with functional characteristics from the output space, especially for
images that contained schematics and GUIs.

The design space elements are perhaps close to psychophysics—
evaluations are well posed and hypotheses can be tested with an (often-
lab-controlled) experiment. Resulting images, on the other hand, have
much more to do with the viewers’ knowledge and context, and has
its footing in vision science and even machine learning. What-we-see



could heavily influence how we act to choose to see next, to provide
another angle to understand visualization effectiveness in the future.

Furthermore, implicit in teaching and learning tasks such as “show
me the node-link diagrams” are much deeper issues involving the notion
of what is meant by “node-link diagrams”. This meaning would vary
with spatial (e.g, topological connectivity) and non-spatial data (e.g.,
social networks), context of use, and observers. We found that student
coders involved in the earlier stage of this project had dramatically
different understandings of author keywords (often with misconcep-
tions). Also, our initial exercise (which lasted for more than a year)
of measuring visual design terms of authors or of low-level features
has largely been challenged by low-level details of naming techniques
rather than what the visualizations show us.

6.2 What We See and Speed of Human Reasoning
The most significant contribution of our work is the derivation of a
small set of categories that attempt to cover all techniques (completely).
By merely seeing a figure, we purposely avoid focus on the data but
rather focus on interpretation of visual design alone.

Our typology might be the first typology easily accessible to draw
clear boundaries between visualization image types. Intuitively, a bar
chart can be encoded as position or height, but users may not relate
them to low-level taxonomy. Describing a bar chart as position and
length may not be as accessible to the general audience as it is for a
visual design expert. Similarly, it is easier to describe a histogram as
a more typical “generalized bar representations” than a “distribution
plot”. Murphy calls effects like this ‘typicality’ [70] for any task
requiring relating an item to its categorical concepts, using typical
terms encourages learning and usefulness for inference tasks. These
categorical concepts further explain how we can understand objects we
have never seen before. and extrapolate new categories from a few given
examples. This current work may partially reflect this, since the expert
coders could not agree on detailed categories when specific techniques
were used. Expert coders also could not always visually distinguish
between techniques. Some reasoning, such as volume rendering is
fuzzier than surface rendering, does not fit all cases and coders did
not feel confident in categorizing these. Even volume graphics experts
made frequent mistakes except for those images they knew a priori.
Coding accuracy is heavily influenced by the coder’s own expertise
and experience in a given area. Such a disagreement suggests that
visualization techniques may not be as easily accessible as we think.

6.3 Limitations and Future Work
Describing visual images at this what-we-see level–matching human
intuition has not been studied in-depth previously. Tufte mentioned
that “when principles of design replicate principles of thought, the
act of arranging information becomes an act of insight”( [89, p. 9]).
The difficult question is whether we can ask visualization scholars to
imitate this way of reasoning: to interpret an image in connecting a
visualization to the designers’ intent. The potential next step is to invite
the community to use our typology to study / refine categories.

The evaluation of our typology is done through its methodology
(initial coding pass, multiple coders resolve conflicts, codes being
iterated and discussed over the course of approximately two years).
Additional validation, e.g. through external researchers that were not
part of the coding team, would be a good next step, but is outside
the scope of this paper. Our framework might potentially be used to
compare and analyze what humans and machines see differently from
these visualization types.

7 CONCLUSION

This article reflects on our journey to define a new visualization typol-
ogy using high-level categories. The journey began with community-
defined visualization keywords. Two failed attempts to use technique
keywords and low-level encodings finally results in our typology of vi-
sualization types that focuses on describing our community’s “output”.
Our visualization types emerged from both structural and functional
similarities of the images. Indeterminacy of hard cases reflects per-
ceptual uncertainty but similarity in each category—this looks like

that—gives insight into the understanding of visualization techniques.
The typology developed here could provide a potentially powerful
framework for studying topics of interests in visualization, such as
image retrieval.
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DimStiller: Workflows for dimensional analysis and reduction. In Proc.
VAST, pp. 3–10. IEEE Computer Society, Los Alamitos, 2010. doi: 10.
1109/VAST.2010.5652392

[45] P. Isenberg, D. Fisher, M. R. Morris, K. Inkpen, and M. Czerwinski. An

exploratory study of co-located collaborative visual analytics around a
tabletop display. In Proc. VAST, pp. 179–186. IEEE Computer Society,
Los Alamitos, 2010. doi: 10.1109/VAST.2010.5652880

[46] P. Isenberg, F. Heimerl, S. Koch, T. Isenberg, P. Xu, C. D. Stolper,
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Not As Easy As You Think—Experiences and Lessons Learnt
from Creating a Visualization Image Typology

Additional material

While the main document contains the main aspects of employed techniques and results, this supplemental material aims at providing exhaustive
and reproducible experimental details.

A INPUT FROM THIS WORK: FIGURES

The first six years of the seven year’s data come from the collection of figure and table data from IEEE VIS publications from 1990–2019. We
added the 2020 dataset to VIS30K data collection [21] using their model. In doing this, we reused the authors’ approach and their meta-data to
remove all tables (unless part of a figure) and their open-source model and tools to extract and clean the new figure data of 2020, after scraping all
papers from the IEEE site. The first author collected and cleaned the image data manually afterward. The final image set was checked by other
VIS30K co-authors. After collecting these source data, we determined a criterion for visualization characterization that underlies our quantitative
analysis of figure content analysis. We coded, refined, recoded, validated, and analyzed the figure content (see Table 1 for the final types).

B ON THE ANALYSIS OF JUDGING VISUALIZATION TYPES: REPRESENTATION TRANSITIONS AND HEURISTICS (ADDITIONAL
RESULTS)

The top-21 keywords by authors and the four functional purposes of the images. The top-21 keywords are both frequently occurring and
distinguishable from one another. This initial process resulted in the following list. bar chart, cartographic map, circular node-link tree, flow
chart, flowline, glyphs, heatmap, isosurface rendering, line chart, matrix, node-link diagram, parallel coordinate plot, pie chart, point cloud,
scatter plot, tag cloud, timeline, treemap, volume rendering, Voronoi diagram, and wireframe rendering. An “other” tag is added to collect any
other techniques that are not on the list.

Our initial purpose classification featured four categories: F1. rendering illustrating a visualization technique, F2. result presentation from
a quantitative evaluation, and F3. screenshot of system or graphical user interface (GUI). F4. photo of a real-world physical scene, These
functions are chosen to mainly identify quantitative charts (F1) which have a long history of basic research development, (F1) algorithm results
largely from scientific visualization communities (F3) techniques from VAST interface papers, and (F4) photo used to show real-world imagery.
Images not in these categories were added to the “other” category.

B.1 Code Changes Between Phases
The birth and death of these techniques and the transition to typology are shown in other supplemental materials. We have shared Instructions
used by coders in other supplemental materials.

B.2 Additional Coding Choices: Concept evolution, rationale, self-correction, and agree to disagree: Early Coding 2006
Not repeatable when characterizing by Authors’ keywords. There is also a scalability issue, in that when a new technique is created, a new
keyword would be added. It is not repeatable or even findable of these new solutions. In addition, focusing on specific cases could only tell us
which specific instances of visualization techniques were used, but it did not identify cases to which the parts papers used were similar (e.g., both
surburst and traditional bar chart ask people to reason with bar height.) Taxonomy is meant to be high-level describing a category of work but
this does not exist. A good classification must be complete (to cover all designs possible) and relatively clean in that many designs fall into one
category [37]. Organizing techniques into a hierarchical form to fit new techniques can facilitate learning and searching for popular techniques as
well comparing the number of distinct techniques and related uses.

We merge some categories if they contain common visual channels. For example, flowlines, parallel coordinate plot, line chart all contain
line drawings. We merged them into the “line-based representations” category. The flow chart category was prevalent and represent the largest
number of figures in the other category from our 2006 coding, was thus added and later further expanded to “schematic representations and
concept illustrations”. The original flow chart has only captured limited number of wiring diagrams. Many charts and diagrams in visualization
papers are visually rich containing techniques to illustrate concepts. We expanded flow chart to “General Schematic Representation, schematic
images, schematic concept illustration”.

We ignored the drawing media used to visualize the data. Equally challenging is whether or not views are hand-drawn or computer-
generated. For example, schematic ones can be drawn by algorithms [52] and there used to be a research field known as “illustrative visualization”
which developed algorithms that would render images in a style that appeared to be hand-drawn. The illustrations in the classical book of Bertin’s
semiotics were also drawn by hand. Hence, we chose to ignore the media in the subsequent coding phase. Instead, we emphasize the elements in
the figure rather than the drawing media. For example, a photograph of an environment (say a VR installation) would be coded as “3D”.

We managed annotation, legend, and context. One of the challenges was the treatment of context information, such as annotation marks, or
color legends. Here, we simply focused on the primary visual encoding and agreed to not code such context information separately. Color legend
is in “other” category. Context unless is relevant to the data is not coded. Some contextual data, such as geometry models or boundary conditions
are important to understand the visualization techniques and were thus coded.

We avoided including data types in the type names. For example, scalar, vector, and tensor field visualization techniques can be defined
using our typology without specifically mentioning flow fields or tensors. Thus, we removed this category. Text-based encodings is the only
exemption to our premise of not coding data-type. However, it is such an esoteric type, that we felt it was justified in that case. We also believe
that, in general, users of our typology will want to see this as a distinct category.

Additional Results on 2D and 3D Uses for “surface-based representations and volumes” and “line-based representations” are in Fig. 9.
We see a decline of 3D use over time.



Fig. 9: Temporal overview of the proportions of 2D and 3D images for “surface-based representations and volumes” and “line-based representa-
tions”.

(a) (b)

Fig. 10: Rationale to remove timeline from our typology schema. Is there a timeline in the figures? (a) yes because of the dates on the x-axis
and (b) yes but not so obvious and the judgement counts on the coders’ knowledge. (Image courtesy of (a) Chen et al. [19] and (b) Song et
al. [85].) © IEEE.

C WEB INTERFACES FOR ANNOTATING FIGURES

We annotated all images and discussed and compared our codings via our own web-based interfaces to support our collaborative work (Fig. 11
(a)-(d)). Our web-based tool automatically loads images and authorize the uses. The uses can tag the given image according to the terms, either
keyword-based or type-based typology. On the back-end of our coding tool, we recorded every button click from each participant during the
coding process for post-hoc analyses. For resolving code-consistency, we also implemented a comparative interface (Fig. 12) for us to resolve all
coding conflicts. Again, all coders’ button clicks were recorded.

D A VISUALIZATION CHARACTERIZATION TOOL

We built an exploration tool as an extension of VisImageNavigator (https://visimagenavigator.github.io/) (Fig. 13) for viewers to lookup, learn,
and re-evaluate our 13 encoding categories and their dimensionality. We have augmented the exploration experience with image similarity, year,
authors, and terms from paper abstract and keywords.

Explore Morphological Structures and Form to Design New Techniques. A figure may contain many pieces of information. To understand
and design one’s own, attention must be directed to the key uses of techniques and visual details. Within a category of our high-level encoding,
we may explore morphological variations in structure and form we purposely avoided in this work.

Advance Education and Improve Visual literacy. Since our categories are high-level, they should be easy to learn and memorize, thus a very
exciting use is to dedicate it to educational uses. We can also use it to explore techniques in specific research areas. Some images and techniques,
e.g., photos, might be more meaningful.



(a) (b)

(c) (d)

Fig. 11: Screenshot of Phase-1-2-3 and in Phases 4–5 Web interfaces. Phase 1 focused on techniques derived from authors’ keywords: The coders
use the interfaces to code each image. The coding labels and categories were updated reflecting the results of weekly discussions. These label
interfaces show that code revolution over time: from Keyword-based to Type-based updates.

Fig. 12: Screenshots of Web Interfaces for the Coding in Phase 6 and for Resolving Coders’ Inconsistency through Pair-wise Comparison. Two
coders results are shown together. For complex images, coders can also look up the images in the same paper coded by other coders through
paper-based or image similarity-based search.



Fig. 13: Our exploratory tool is integrated with the VisImageNavigator (https://visimagenavigator.github.io/). Viewers can explore our codes of
9,039 labels by visualization types, functional types, dimensionality, and difficulty levels.
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