A Model of Spatial Directness in Interactive Visualization

Stefan Bruckner, Tobias Isenberg, Timo Ropinski, Alexander Wiebel

University of Bergen, Norway Inria / Université Paris-Saclay, France Ulm University, Germany
University of Applied Sciences Worms, Germany

Motivation

Motivation

http://tutorials.awmw.org/DirectVolumeInteraction

Direct Volume Editing

Kai Bürger, Jens Krüger, and Rüdiger Westermann

Abstract

In this work we present basic methodology for interactive volume editing on GPUs, and we demonstrate the use of these methods to achieve a number of different effects. We present fast techniques to modify the appearance and structure of volumetric scalar fields given on Cartesian grids. Similar to 2D circular brushes as used in surface painting we present 3D spherical brushes for intuitive coloring of particular structures in such fields. This paint metaphor is extended to allow the user to change the data itself, and the use of this functionality for interactive structure isolation, hole filling, and artefact removal is demonstrated. Building on previous work in the field we introduce high-resolution selection volumes, which can be seen as a resolution-based focus+context metaphor. By utilizing such volumes we present a novel approach to interactive volume editing at sub-voxel accuracy. Finally, we introduce a fast technique to paste textures onto iso-surfaces in a 3D scalar field. Since the texture resolution is independent of the volume resolution, this technique allows structure-aligned textures containing appearance properties or textual information to be used for volume augmentation and annotation. Index Terms-Volume editing, GPU, painting, carving, annotations.

Interactive visual exploration of volumetric scalar fields is required in many different areas ranging from medicine and engineering to physics and biology. To support the exploration task, volume rendering techniques have been developed to a high degree of sophistication
methodology, if designed in a generic way without the restriction to a particular application, then has the potential to be used in a number of different scenarios. In particular, to support the editing process and to avoid putting the burden completely on the user, optional constraints

Motivation

http://tutorials.awmw.org/DirectVolumeInteraction

Direct-Manipulation Visualization of Deep Networks

Abstract-In this work we present b methods to achieve a number of diffe scalar fields given on Cartesian grid: for intuitive coloring of particular str itself, and the use of this functionalit on previous work in the field we intro metaphor. By utilizing such volumes introduce a fast technique to paste t volume resolution, this technique allo for volume augmentation and annota Index Terms-Volume editing, GPU,

Interactive visual exploration of volumetr in many different areas ranging from me physics and biology. To support the explo ing techniques have been developed to a hi

Daniel Smilkov
D. Sculley

Google, Inc.
5 Cambridge Center, Cambridge MA, 02142 dsculley@google.com

Fernanda B. Viégas
Google, Inc.
5 Cambridge Center,
Cambridge MA, 02142
viegas@google.com

Martin Wattenberg Google, Inc.
5 Cambridge Center,
Cambridge MA, 02142
wattenberg@google.com

[^0] technology, however, is difficult. While the theory is im-

Recently, several impressive systems have appeared that do exactly this. Olah's elegant interactive online essays [5] let a viewer watch the training of a simple classifier, providing a multiple perspectives on how a network learns a transfor-

Motivation

http://tutorials.awmw.org/DirectVolumeInteraction

		works
	Indirect Multi-Touch Interaction for Brushing in Parallel Coordinates	
	Robert KosaraUNC Charlote, USA	
	abstract	
	alization is often complicated and tedious. Brushing data in a visualization such as parallel	
	ction and even disouragagng more complex questions.	Onine esers fil let
	I converient interation with paralel coor-	

Motivation

http://tutorials.awmw.org/DirectVolumeInteraction

Direct Manipulation Interfaces

Edwin L. Hutchins, James D. Hollan, and
Donald A. Norman
University © California, San Diego

Motivation

http://tutorials.awmw.org/DirectVolumelnteraction

Direct Manipulation: A Step Beyond Programming Languages

Questions

- What is "directness" in the context of interactive visualization?
- Is directness a useful notion for better understanding the interplay between visualization and interaction?
- What are the (sub-)dimensions of directness?
- Can we measure it? Can we predict it?

Dimensions of Directness

- Visualization-interaction (vi) directness

- Output-manipulation (om) directness

Example: Point Picking in VolVis

- Reconstruct 3D position from picked point in 2D image
- We encounter many data values along a viewing ray
- Compositing function defines how data values contribute to a pixel

Types of Compositing

intensity profile along a viewing ray

Types of Compositing

intensity profile along a viewing ray

Types of Compositing

intensity profile along a viewing ray

Types of Compositing

intensity profile along a viewing ray

Types of Compositing

intensity profile along a viewing ray

VolVis Point Picking Directness

- Illustrates limits in achievable vi-directness when dealing dealing with 3D data
- Higher vi-directness possible, if compositing function can be inverted
- First hit, maximum intensity: can unambiguously reconstruct 3D position from 2D pixel location
- Averaging: all samples contribute equally to the pixel, reconstruction not possible
- Accumulation: may be able to heuristically reconstruct "close" 3D position in some cases (interaction mapping is a quasi-inverse of the visualization mapping)

Direct Input for 3D Data?

- Manipulation space: 2 DOF (1 finger)
- Interaction space:
- 3 DOF for position
- 3 DOF for orientation
- 1-3 DOF for scale
- n DOF for additional parameters
- All per object/element
- typically control of only 4 DOF simultaneously (4-5 max.)*
* some scientific evidence for this limit

Direct Input for 3D Data?

- Manipulation space: 2 DOF (1 finger)
- Interaction space:
- 3 DOF for position
- 3 DOF for orientation
- 1-3 DOF for scale
- n DOF for additional parameters
- All per object/element
- typically control of only 4 DOF simultaneously (4-5 max.)*
* some scientific evidence for this limit

Direct Input for 3D Data?

- Manipulation space: 2 DOF (1 finger)
- Interaction space:
- 3 DOF for position
- 3 DOF for orientation
- 1-3 DOF for scale
- n DOF for additional parameters
- All per object/element
- typically control of only 4 DOF simultaneously (4-5 max.)*
* some scientific evidence for this limit

Direct Input for 3D Data?

- Manipulation space: 2 DOF (1 finger)
- Interaction space:
- 3 DOF for position
- 3 DOF for orientation
- 1-3 DOF for scale
- n DOF for additional parameters
- All per object/element
- typically control of only 4 DOF simultaneously (4-5 max.)*
* some scientific evidence for this limit

Direct Input for 3D Data?

- Manipulation space: 2 DOF (1 finger)
- Interaction space:
- 3 DOF for position
- 3 DOF for orientation
- 1-3 DOF for scale
- n DOF for additional parameters
- All per object/element
- typically control of only 4 DOF simultaneously (4-5 max.)*

* some scientific evidence for this limit

Classification of Directness by Mapping Type

- Visualization-interaction directness: 3 vi-mapping types
- Inverse
- Quasi-inverse
- Non-Inverse
- Output-manipulation directness: 2 om-mapping types - Identity
- Not identity

6 Classes (3 vi $\times 2$ om)

v, i: inverse
v, i : quasi-inverse om : not identity

v, i : quasi-inverse om : identity

v, i : non-inverse om : identity

Example: Which Class?

Example: Which Class?

Assuming touchscreen input to select a location

Example: Class 1

Example: Which Class?

Image courtesy of and © Claudia Hänel and Bernd Hentschel, used with permission.

Example: Class 1

Image courtesy of and © Claudia Hänel and Bernd Hentschel, used with permission.

Example: Class 4

Towards Measuring vi-Indirectness

$$
\Delta v, i=\int_{\substack{\text { importance/relevance } \\ \text { of a data location } \mathrm{i} \\ \text { models user tasks }}}^{\boldsymbol{T}(\boldsymbol{x})|\boldsymbol{x}-\boldsymbol{i}(\boldsymbol{i}(\boldsymbol{i}(x)))| d x}
$$

See the paper for a detailed example where we actually implemented the measure

Conclusion

Descriptive usage

- Term directness precisely defined
- More Characteristics
- Captures more aspects of directness

Evaluative usage

- Classify ore even measure directness of existing techniques
- Relate directness to efficiency

Vision:

- Generative usage
- Automatically suggest appropriate interaction

Final Notes

- Often direct is interepreted as „better" than indirect/less direct.
- This is definitely not always the case!
- For certain cases less direct might be advantageous
- More flexible
- Faster
- Spatial in the title does not mean spatial data
- Abstract data changes only left part of model

A Model of Spatial Directness in Interactive Visualization

Stefan Bruckner, Tobias Isenberg, Timo Ropinski, Alexander Wiebel

Questions?

[^0]: ABSTRACT
 The recent successes of deep learning have led to a wave of interest from non-experts. Gaining an understanding of this

