Basak Alper, UCSB, Aviz INRIA
Benjamin Bach, Aviz INRIA
Nathalie Henry-Riche, Microsoft Research Redmond
Tobias Isenberg, Aviz INRIA
Jean-Daniel Fekete, Aviz INRIA

Weighted Graph Comparison Techniques for Brain Connectivity Analysis

Study of Brain Connectivity

Brain connectivity data in the form of weighted graphs visualized as node-link diagrams within spatial context of brain

Methodology and Outline

- 1 Identify high level neuro-scientific tasks in brain connectivity analysis
- 2 Explore design space for augmented matrix and node-link visualizations supporting comparison of two weighted graphs
- 3 Controlled Study

Methodology and Outline

- 1 Identify high level neuro-scientific tasks in brain connectivity analysis
- 2 Explore design space for augmented matrix and node-link visualizations supporting comparison of two weighted graphs
- 3 Controlled Study

1

Brain Connectivity Task Analysis

Brain Connectivity

Anatomical Connectivity

Functional Connectivity

Brain Connectivity Visualization

Brain Connectivity Analysis

High Level Neuro-Scientific Tasks

- Cognitive functionality
- Alterations over time
- Anomalous patterns
- Characterization of an individual's connectivity
- Correlations between functional and anatomical connectivity

Brain Connectivity Analysis

 Several brain connectivity data can be expressed in the form of weighted graphs.

 Several high level neuro-scientific investigations can benefit from visual comparison of these weighted graphs.

Design Space Exploration

How to support visual graph comparisons?

- 2D instead of 3D
- Non-spatial instead of within the spatial context of brain
- Superimposed instead of juxtaposed

Alternative visualizations for node-link representations encoding edge weights in two graphs:

Superimposed versus side-by-side edge encodings

Alternative visualizations for matrix representations encoding edge weights in two graphs:

Using scaled glyphs within each matrix cell

Alternative visualizations for matrix representations encoding edge weights in two graphs:

Alternatives for dividing the matrix cell

Edge Weight Encodings in Matrix

Connections more dominant in Graph 1:

Connections more dominant in Graph 2:

Connections with equal strength:

3

Controlled Study

Techniques

Generic Comparison Tasks

- Assess weight change of a node's connections (Trend)
 - Given one highlighted node, does the overall edge weight to all of its neighbors decrease or increase from G1 to G2?
- Assess connectivity of common neighbors (Connectivity)
 - Given two highlighted nodes, how many of their common neighbors in G1 are still common neighbors in G2?
- Identify the region with most changes (Region)
 - Identify the region showing the most variation between G2 and G1?

Experiment Design

A within subject design of:

- 2 Techniques (Matrix, Node-Link) x
- 3 Tasks (Trend, Connectivity, Region) x
- 2 Data Sizes (40, 80 nodes) x
- 2 Edge Densities (5%, 10% edge density) x
- 4 repeats
- = 96 trials per participant

Experiment Design

We generated a synthetic graph per:

2 Data Sizes x 2 Edge Densities x 4 repeats

11 subjects

~45 minutes

Visual Stimuli

Visual stimuli images used in the Region task for the Node-Link and Matrix techniques

Controlled Study

Hypotheses:

- (H1) Matrix > Node-Link for dense datasets in Trend task.
- (H2) Matrix ~ Node-Link in Connectivity task.
- (H3) Matrix > Node-Link in Region task.
- (H4) Node-Link decrease in performance for dense datasets.

Study Results: Accuracy

Means of accuracy in percentage
Standard Error is shown in parenthesis

	Matrix	Node-Link	p-value
All Tasks	88.5 (0.9)	69.3 (2.0)	< .001
Trend	95.5 (1.2)	85.2 (4.3)	<.05
Connectivity	90.3 (1.0)	70.5 (2.5)	< .0001
Region	79.6 (2.1)	52.3 (4.5)	<.0001

Mean accuracy in percentage (Error bars indicate +- SE)

Study Results: Time

Mean time in seconds (Error bars indicate +- SE)

Technique

Matrix

Node-Link

Means of completion time in seconds (excluding errors)
Standard Error is shown in parenthesis

	Matrix	Node-Link	p-value
All Tasks	9.3 (0.3)	11.0 (0.4)	< .001
Trend	7.1 (0.3)	8.2 (0.5)	Not significant
Connectivity	11.7 (0.5)	14.3 (0.7)	< .0001
Region	9.1 (0.5)	11.1 (0.7)	<.01

Study Results Discussion

- Our hypotheses H1 and H3 verified:
 - Matrix > Node-Link (accuracy and time) for both Trend and Region tasks.
- Our hypothesis H2 not verified:
 - Matrix > Node-Link (accuracy and time) for the Connectivity task.
- Our hypothesis H4 verified:
 - Node-Link accuracy performance decreases with increase in size as well as density.

4

Conclusions

Implications for Design

Integration of spatial and abstract representations.

Conclusion

- We propose a novel matrix representation that supports comparison of two weighted graphs.
- Brain connectivity visualization tools can significantly benefit from supporting visual weighted graph comparisons.
- Applications to other domains such as gene correlation, protein coactivation networks as well as computer or social networks are possible.

Acknowledgements

We would like to thank:

- Jr. MD Thomas Grabowski,
- Dr. Tara Madhyashta,
- Dr. Kayo Inoue

from The Integrated Brain Imaging Center (IBIC) at University of Washington

Dr. Arjun Bansal from Harvard Medical School