e b»gz*-?-ﬁ-*-' s

Using StippleShop

Domingo Martin

version: 0.1
4/2017

Contents

1 General information 7
1.1 Copyright e 7

1.2 Introduction 7

1.3 Functionality 8

1.4 Softwareincluded 10

2 Using Stippleshop 11
2.1 Working pipeline 11

2.2 Limitationso e e e 12

23 Astepbystepexample 13

24 Results. L 19
24.1 Examplel 19

242 Example2 21

243 Example3 23

244 Exampled 25

3 Filters 27
3.1 Generaldefinitiono 27

3.2 JSONformat e 28

Domingo Martin®©

4 CONTENTS

33 Categories e e e e e e 28
3.4 Placementand Stippling 29
3.4.1 Weighted Centroidal Voronoi Diagram 29
342 Recursive Wang Tiling 30
3.4.3 Capacity-Constrained Voronoi Tessellation 30
3.4.4 Example-Based Grayscale 31
345 Structure-Aware e e 31
34.6 Stipplingby Example oo, 32
3.5 Halftoning L 33
3.5.1 Halftoning Ostromoukhov 33
3.5.2 Contras-Aware Halftoning 33
3.5.3 Space Filling Curve Halftoning 34
3.5.4 Adaptive Clustering and Selective Precipitation Halftoning 35
3.6 Dotoutputcontrol 35
3.6.1 DotEBG 35
362 DotSVG e 36
37 Contrast e e e e 37
3.77.1 Contrast-Bright L 0oL 37
372 RetineX e 37
3.8 Edgedetectors. 38
381 Canny e 38
382 DoG. ... e 39
3.83 DoGwithborders. 39
384 Kang 39
39 Blur 40

Domingo Martin ©

CONTENTS 5

39.1 Gaussian 40
3.10 Effect 40
3.10.1 Inversion 40
3.10.2 Threshold 41
3103 Dilationo 41
3.104 Distancefield o 42
3.11 Combination 43
3.11.1 Combination 43
302 MEASUIE v v v e e e e e e e e e e e e e e 43
3.12.1 Measure SSIMand PSNR 43
3.13 Examples 44

Domingo Martin®

General information

1.1 Copyright

This software has been programmed by Domingo Martin (dmartin @ugr.es). Most parts are
original and others are based on original or modified versions of public software. We are
asking for all the permissions to make the code public and free. Meanwhile I will make a
binary version.

StippleShop is a demo program for research purpose only. It contains errors, it may be diffi-
cult to use, and there are a many things to improve and/or to include. So, please be patient.
Anyway don’t hesitate to send us your questions, doubts, improvements or comments.

We want to remark that some of the algorithms that we have implemented are based on the
information obtained directly from the articles not from any other software. For this reason
it is possible that the results of the new code do not match exactly the results of the original
articles. Even for some cases, the algorithms we have developed may differ due to some
code optimization made to improve the performance of the underlying algorithms. So, they
have been addapted to the hardware available producing slightly different results that shown
in the images of those original articles.

1.2 Introduction

StippleShop is a free software created for designing and rendering stippling images. We cre-
ated a program with a fixed functionality that allows to test different algorithms, so the main
goal of this software is to perform comparisons between different methods. Secondly, this
software allows to test new approaches by connecting different techniques. So, we started
to develop a program that could dynamically change the results interactively. In order to
implement this idea, we considered each method as a black box taking one or more inputs
and resulting in only one output. Finally, this boxes can be chained to get a final result. As
you may have been realized, we have maintained the Unix philosophy in mind: minimalist,
modular software development. For this reason, our software emphasizes building simple,
short, clear, modular, and extensible algorithms that can be easily maintained.

The first step in this software development was to define its functionality. We wanted to
produce stippling with some of the methods that were published, creating the programs by
ourselves in some of the cases, and using the sources lent by authors in other cases. By that
moment, we started to realize the need of implementing some auxiliary methods that could
help us to improve the input images as well, as for example, to increase the contrast before
applying some stippling method. This idea implied that the output of one method should be

Domingo Martin®

8 General information

connected to the input of other method. Applying some functionality to that result in order
to produce another output image, then we started to call them filters.

It is easy to see that in some cases, the output of one filter is the input of another filter.
So that led us to the idea of having a set of images and a set of filters. The combination
of several filters was called an effect. The order of execution is done recursively, so the
software is kept simple.

Given the need of applying several methods for image processing, we chose OpenCV to
commit that work. And in order to create a multi-platform user interface we decided to use

Qt.

This software is entirely programmed in C++.

1.3 Functionality

StippleShop has a simple architecture underlying that allows us to extend its functionality
in a easy way as filters: every filter is derived from a basic class named _filter, being
necessary to overload its update () method. We use a two level approach for user in-
teraction: a middle class that connects the class containing the basic functionality with an
especial class that manages the widgets and their callbacks. This class has been adapted to
Qt, so we can configure the Ul library in an easy way.

There are two types of filters: filters with one input and one output, and filters with two
inputs and one output.

Generally, all filters support color and grayscale images indistinctly, but grayscale images
seems to be faster. Only in a few cases, the input must be a color image to produce the
correct output!.

So far we have implemented the following filters:

e Placement and Stippling

Weigthed Centroidal Voronoi Diagrams by Secord [1]

Recursive Wang Tiling by Kopf et al. [2]

Capacity-Constrained Voronoi Tessellation by Balzer et al. [3]

Structure-Aware Stippling by Li and Mould [4]

Stippling by Example (based on the original source code) by Kim et al. [5]

Example-Based Grayscale stippling by Martin et al. [6, 7]

't is more precise to talk about 3 channels (color), and 1 channel (gray-scale) images. It is easy to see that
1 channel filters are faster than 3 channels ones.

Domingo Martin ©

1.3 Functionality 9

e Halftoning

— Error diffusion by Ostromoukhov [8]
— Contrast-aware halftoning (without priority list) by Li and Mould [9]

— Space Filling Curve based on Velho and Gomes [10] and Wong and chi Hsu
[11]

— Adaptive Clustering and Selective Precipitation by Wong and chi Hsu [11]
e Dot output control

— Example-Base Grayscale by Martin et al. [6]
- SVG

e Contrast

— Contrast and brightness

— Retinex filter by Land [12]

e Edge detectors

Canny’s edge detection [13]
DoG: difference of Gaussians [14]

Borders of the difference of Gaussians: edges are obtained using a scanline
algorithm; this is useful because the edges are one pixel thick

Kang et al.’s lines [15]
e Blur
— Gaussian blur

Other effects

— Inversion
— dilation

— distance field

Combination

— Combination of two inputs, pixel to pixel, with an associated operation (AND,
OR, SUM, SUBSTRACTION, MULTIPLICATION, DIFFERENCE)

e Measuring

— SSIM [16] and PSNR

Domingo Martin®

10 General information

1.4 Software included

These software have been used (with or without modification) for the development of Stip-
pleShop :

e Error diffusion halftoning by Ostromoukhov [8]
https://liris.cnrs.fr/victor.ostromoukhov/publications/
publications_abstracts.html#SIGGRAPHO1_VarcoeffED

e Stippling by Example by Kim et al. [5]

e Capacity-constrained Voronoi tessellation by Balzer et al. [3]
https://code.google.com/archive/p/ccvt/

e Recursive Wang tiling by Kopf et al. [2]
http://johanneskopf.de/publications/blue_noise/source_code/index.html

o Halftoning with selective precipitation and adaptive clustering by Wong and chi Hsu

[11]
http://www.cse.cuhk.edu.hk/ ttwong/papers/halftone/sfc.html

e Retinex filter (Land [12]) based on GIMP code.

e Node editor by Stanislaw Adaszewski
http://algoholic.eu/qnodeseditor-qt-nodesports-based-data-processing-flow-editor/

Domingo Martin ©

https://liris.cnrs.fr/victor.ostromoukhov/publications/publications_abstracts.html#SIGGRAPH01_VarcoeffED
https://liris.cnrs.fr/victor.ostromoukhov/publications/publications_abstracts.html#SIGGRAPH01_VarcoeffED
https://code.google.com/archive/p/ccvt/
http://johanneskopf.de/publications/blue_noise/source_code/index.html
http://www.cse.cuhk.edu.hk/~ttwong/papers/halftone/sfc.html
http://algoholic.eu/qnodeseditor-qt-nodesports-based-data-processing-flow-editor/

Using Stippleshop

2.1 Working pipeline

The program is divided in two main processes: edition and visualization. These processes
are related with the two main tabs: the Nodes editor tab and the Results tab.

The edition process is simple: the user cre-
ates a new effect or loads a previously de-
fined effect that can be edited until the de-
sired result is obtained. The Nodes edi-
tor shows the filters and their connections.
It allows us to add new filters to design
some effect or to delete one or more filters
from some existing effect. Filters can be
connected by dragging the output port and
dropping the link at the input port of the tar-
get box.

The visualization process applies the effect

to an input image and produces the inter-

mediate and the final results. To produce these images the user must click at the Results tab.
Before obtaining any result it is oblied to load an image, otherwise the final result will not
be computed. The loaded image becomes two boxes, representing two different versions of
the same image: one in color and one in grayscale. These boxes should be the input of any
of the next filters in the effect. If the loaded image is grayscale, both color and grayscale
version will be the same.

Domingo Martin®

12 Using Stippleshop

It is important to take in mind that every filter produces an output result named like the
filter, which may be the input of another filter in turn. Each output image can be selected
by the user to show some intermediate result. This is done by selecting the output at the list
provided in the Images tab. Each image is correlated to the output of a filter, so the name
will be the same as the filter.

For each filter, the user can modify its parameters to adjust the result. In order to set those
parameters, the Filters tab must be clicked, and then a filter must be selected. Changes are
propagated in the chain, so some change in one input filter affects to all the connected boxes
until the final result.

This uncoupling between images and filters provides an extraordinary flexibility, allowing
to explore different values for a filter and to show the effects in other filters as well.

Once the final result of an effect is obtained, it is possible to click again at the Nodes editor
tab. To edit the result it is possible to go back and to add or remove filters, or even to modify
the connections between filters by deleting or making new connections. Again it is possible
to show the result by clicking at the Results tab. This process can be repeated until the
desired result is obtained.

For saving an effect, it is necessary to create or to load some effect. Take in mind that to
load an image is a requirement for the software because it is the way our software has to
check that the effect is right. If that is the case, the current parameters will be saved. In the
same way, for saving images it is necessary to create an effect and to load some input image
too.

2.2 Limitations

StippleShop has many limitations due to its very nature as demo tool, not only in its user
interface but also in its functionality. We will try to fix and improve the program as soon as
we can but in the mean time here is some of these limitations:

It is possible to connect one output to several inputs but the user should avoid to create
loops in the connections. The current version does not check for loops, so be careful with
this condition or just expect the worse.

Though it is possible to change from the edition process to the visualization process and
vice versa in any moment, the implementation is not optimal. If there is no edition in the
Nodes editor tab, switching to the visualization tab implies no computing. Otherwise, if
the effect is edited, switching to the Results tab implies that the effect is constructed again
from the very beginning. This is due to the complexity of checking all the possibilities in
the pipeline.

Domingo Martin ©

2.3 A step by step example 13

2.3 A step by step example

Now this section will show you how to create an effect in a step by step example. Let’s
start with an easy example that shows all the actions that are necessary to produce a final
result. For this example, we want to produce an effect that takes an input image, applies a
contrast filter to eliminate information, then applies a halftoning method (Stromoukhov), a
WCVD method for dot placement, and finally, it produces a result that uses SVG dots and
modulates the size depending on the tone of the original image. The idea is to reproduce
Secord’s WCVD technique using the possibilities of StippleShop . Here is the final structure
we want to obtain.

T CONTRAST HALFTONING OST wevD
T contrast_1 halftoning_ost_2 wevd 3
— in1 inl in1
outl outl outl
DOT 5VG

GRAY dot_svg_4
GRAY inl

outl in2

outl

Once the program is running, we must first decide between creating a new effect by selecting
Menu — New effect or by loading an effect in Menu — Open effect file. For this example,
we select the creation of a new effect.

Nodes editor is initialized by COLOR and GRAY blocks.

These blocks represent the color and the grayscale ver-
sions of the image that must be loaded to apply effects. K

File

Also, the list of filters is enabled (it should appear in dark | woce eaeor | aesuss
tone). If we load an effect from a file, a diagram with all = uerawsimm

Weigthed Centroidal...

the filters and connections will be displayed. Capacity Congiaine.
Example-Based Gra COLOR
ztruntureﬂware COLOR ot
ippling By Example
. . . . ~ Halftonin
Now it is possible to see the result of applying the effect sromiho
. . . Space Filling Curve
(though in this case we can only see the loaded image). + ot puhsaPive Clistering
. . . Dot EBG GRAY
So, in order to display the effect, we click on the Results2"° A
... . . Contrast Bright
tab. The initial result is a gray image because we have . ..ide.
. Canny
not loaded any image yet. Dog borers
Kang

aaaaaaaa

The next step is to load the image by means of the menu

File and Open input image, and then selecting our image.

The program loads the image and produces a complementary version: if the loaded im-
age has 3 channels of color (RGB) the program will create a grayscale version too; if the
original image is grayscaled, an RGB image will be created. The RGB image is named as
COLOR and the grayscale image is named as GRAY. It is possible that the program asks
about adjusting the size of the input image. This may happen because our software needs
an image to be multiple of 4. Notice that filters that need and/or produce an RGB image are

Domingo Martin®

14 Using Stippleshop

drawn in orange, whereas filters that need and/or produce a grayscale image are drawn in
gray.

Now it is possible to see the effect of each filter by selecting Images tab.
The box named COLOR - the RGB version of the input image - is selected —‘ :
by default.

We can now create the new effect returning to

the Node Editor tab. In order to add our fil- [&] =)

ter named Contrast-Bright, we search for it at

the list, then we select the filter by clicking on = | — FJ &)

its name, turning the selected filter into a bright /'

blue color. The filter is added by pressing the =

Add button at the bottom of the list or by right- '

clicking and selecting the Add filter option. In

any case, the new filter will appear at the same

position under the GRAY filter. This new filter contains the uppercased name of the type of
the filter and the lowercased name of the filter joined to a number. It is possible to change
its name by double clicking on the block. A limitation of our software is that the names
of blocks must be unique (Warning: the current version does not check there is no names
repetition).

It is necessary to move the filter from this initial position in order to use it and to allow that
other filters can be added: if the initial position is not empty, the program will warn us about
it.

The filter is moved by a drag-and-drop operation: When

we click at the filter it become selected, changing its color fF== L
to yellow (it can be unselected by clicking anywhere at Inpt }tp ut
the background of the application). We can move the fil- \‘4 L

ter by dragging and dropping it in any desired position.

The next operation consists in connecting the output of one filter with the input of other
filter. In this case, we want to connect the output of the GRAY filter to the input of the
Contrast-Bright filter (its gray color implies that this filter accepts a grayscale image as
input; it is also possible to connect an RGB output to a grayscale input and vice versa but
this implies a conversion that requires some extra computation time). The input and output
ports of a filter are drawn as red circles. Given that the process runs from left to right, the
input ports are on the left of the filter and the output port is always on the right of the filter.
They are also marked with the text “in” and “out” and a number.

The process for connecting two boxes is easy: click on the red circle of the output port for
GRAY filter, drag the arrow and drop it at the red circle that represents the input port of
Contrast-Bright filter.

When two boxes are linked, a path is drawn connecting theirs ports. This implies that the

Domingo Martin ©

2.3 A step by step example 15

output of the GRAY filter is the input of the Contrast-Bright filter. Also, this implies that a
new image with the same name as the Contrast-Bright filter will be created.

To check this effect we must switch to the Re-

sults tab, as we previously did. It is possible to EStﬁ:
see the effect of Contrast-Bright filter applied

to the grayscale input image by clicking on the

name of the new filter that has been included

in the Images tab. Due we have not set the pa-
rameters of our filter, we get as result of apply- =Y CONTRAST

ing the Contrast-Bright filter, the same images GRAY - .

as the original grayscale input. We can adjust

the parameters of the filter to see some change,

so we switch to Filters tab. This displays the list of filters that have been defined in the
effect. There should only be one filter: Contrast-Bright. We select the filter from the list
by clicking on it (in this case, as there is only one, it is selected by default). Now all the
parameters of the filter should appear below the list. The parameters of Contrast-Bright
filter are a multiplication factor for the contrast (which values are in between 0.1 and 5) and
an addition factor for the bright (which values are in between -255 and 255).

out1

Our intention is to reduce the amount of infor-
mation, so we increase the contrast up to 2 (the
user can change it dynamically until the desired
result is obtained).

mages | ries

It is possible that you do not see any change but
the color image. This is due to that the image
that is shown in Images tab is unlocked from the
image that is selected in Filters tab. This is done
intentionally to improve the flexibility: it allows
us to modify the parameters of one filter and to
see the effect of another filter.

In order to see the resulting effect of the adjusted parameters of the Contrast-Bright filter,
this must be selected in the Images tab.

The next filter we want to add is the WCVD filter. So, we must return to Node Editor tab.
The process for including the WCVD is basically the same. Once the filter is added and
moved, we place it near the Contrast-Bright filter. We proceed to connect the output of the
Contrast-Bright filter with the input of the WCVD filter. The result is shown by clicking on
the Results tab and then selecting the WCVD filter in the Images tab. The result is a set of
pixels that approximates the input image.

At this moment the result may seem confusing for the user but take into consideration that
each pixel represents the position of each dot without any aesthetic characteristic. Another
important thing to take into account is that the WCVD implementation randomly creates a

Domingo Martin®

16 Using Stippleshop

set of seeds for the CVD using the darker pixels (values lesser than 255) of the input image.

We can play with contrast to see how much information is removed. For example, when
we set the contrast to 1 (the default value), there are many dots and it is very difficult to
distinguish any shape. Although when we set the contrast to 2, the most important zones
are visible and the the less important areas have been removed.

But if we want to follow Secord’s approach we are not done yet. We must also use a
halftoning input image, in our case we are going to use a Ostromoukhov’s halftoning.

We need to switch again to Node Editor tab. As we need the Ostromoukhov filter between
the Contrast-Bright filter and the WCVD filter, it is necessary to disconnect the Contrast-
Bright filter from the WCVD filter. This done by right clicking on the path that connects
both filters and selecting the option remove. Now we can include the Ostromoukhov fil-
ter following the same steps as before. Though the filters can be placed anywhere, it is
convenient to organize them in a graphically coherent way for the sake of clarity.

The last step is to change the appearance of each
dot from a pixel to a more complex and aesthetic
representation. In this example we want to pro-
duce a vectorial result. So, we select the Dot
SVG filter. There is no enough space to include
the new filter so we can turn the mouse wheel
until we have adjusted the image to our needs.
Once this is done, the new filter can be added.
We repeat the same steps: first by adding a new
Dot SVG filter, later moving it to another posi-
tion and linking it. This filter has two inputs:
input 1 represents the position of the dots, input
2 is used to modify the size of the dots depending on the tone.

Finally, to get the final result, we must return to the Results tab and select the Dot SVG

Domingo Martin®

2.3 A step by step example 17

filter in the Images tab. In order to set the parameters, we select the Filters tab and select
the Dot SVG filter. It is important to note that the displayed image is not vectorial but an
approximation. The vectorial result is obtained by pressing the Save SVG file button at the
bottom of the widget. It is possible to select between different shapes. The default option
replaces each dot by a black circle.

The filter computes the size of each dot by means of a random value in between two defined
numbers (a minimum and a maximum). These values can be manually set by the user. Other
possibility is to define the size of each dot depending on the tone of the corresponding
pixels of the second input image, and using the same minimum and maximum values as
boundaries.

Now the result is displayed as the final image and its corresponding vectorial result.

Now, if we are happy with the result we can save the effect. We switch to the Node Editor
tab, and then we select the Save effect file option in the menu.

StippleShop)
Eile

Node Editor | Results

Images | Filters
Filters

contrast 0
halftoning_ost_1

dot_svg_3
Dot type (For SVG saving)

Circle

Modulate dot size

V| Modulate dot size

Min dot size

1 10

Max dot size

] — 10

Number of dots

Save 5VG file

Domingo Martin®

18 Using Stippleshop

Domingo Martin®

2.4 Results 19

24

Results

Now we show some results that can be obtained by StippleShop .

24.1

Example 1

This effect improves the contrast of the input image, then a halftoning based on Otro-
moukhov’s method is obtained, and finally, a final version is produced by means of scanned

dots.

"effect":

[
{

"type_filter": "CONTRAST"
"input_image_0": "GRAY",
"output_image_0": "contrast_1",
"input_image_1": "NULL",

"contrast": " 2,20",

"bright": "0O"

"type_filter": "HALFTONING_OST"
"input_image_0": "contrast_1",
"output_image_0": "halftoning_ost_1",
"input_image_1": "NULL"
"type_filter": "DOT_EBG"
"input_image_0": "halftoning_ost_1",
"output_image_0": "dot_ebg_1",
"input_image_1": "GRAY",
"pixel_density": "300PPI",
"modulate_dot_size": "false",
"black_dots": "false",
"black_threshold": "220"

Domingo Martin®

20 Using Stippleshop

Fie

Nodedior | Results

HALFTONING 0ST
halfoning o
inl

~ Halfor

Space Fillng Curve
‘Adaptve Clusterng Sel.
~ Placement
Welgthed Centroidal V.
Recursiva Wang Tiing
T

co
~ Dots types
Dot £85
Dot VG
~ Contrast
Contrast Bright

Retinex
~ Edges detectors

Canny
Do
DG borders
Kang
~ B
Gaussian
~ Efec
Inversion
Thieshokd
lation
Distance feld
~ Combination
Combination
~ Measu

Measure SSIM PSR

Fle

Node Edtor | Results

images | Fiters

Fiters

dot_ebg.1
Pixeldensity
a00pp1 -
Moduate dotsize
¥ Moduate dot size
Black dots
Black dots

Black hreshold

o T T s

Number ofdots

Figure 2.1: Example 1.

Domingo Martin®

2.4 Results 21

2.4.2 Example 2

This effect improves the contrast of the input image, then a halftoning based on Space
Filling Curve method is obtained, and finally, a final version is produced by using SVG
dots.

"effect":

"type_filter":"CONTRAST",

"input_image_0": "GRAY",
"output_image_0": "contrast",
"input_image_1": "NULL",
"contrast":"default",

"bright":"default"

"type_filter": "HALFTONING_SFC",
"input_image_O0": "contrast",
"output_image_0": "halftoning_sfc",
"input_image_1": "NULL",

"cluster size": "9"

"type_filter":"DOT_SVG",

"input_image_0": "halftoning_sfc",
"output_image_0": "dot_svg",
"input_image_1": "contrast",
"dot_type":"default",
"modulate_dot_size":"false",
"min_dot_size":"default",
"max_dot_size":"default"

Domingo Martin®

22 Using Stippleshop

Fie

Nodedior | Results

~ Stippling
Example
Structure Aware
Stppling By Example
~ Halfioring

raysc.

Ostromoukhov
ContrastAware:
Space Fillng Curve

terng Sel.

Welgthed Centroidal V.
Recursiva Wang Tiing
covr

Dist
~ Combination
Combination
Measure
Measure SSIM PSR

add

Fle

Node Edtor | Results

images | Fiters

Images

dotsvg

Figure 2.2: Example 2.

Domingo Martin ©

2.4 Results

23

2.4.3 Example 3

This effect improves the contrast of the input image, then a halftoning based on Recursive
Wang Tiling method is obtained, and finally, a final version is produced by using SVG dots.

"effect":

[
{

"type_filter":"CONTRAST",

"input_image_0": "GRAY",
"output_image_0": "contrast",
"input_image_1": "NULL",
"contrast":"default",

"bright":"default"

"type_filter": "RWT",
"input_image_0": "contrast",
"output_image_0": "rwt",
"input_image_1": "NULL"

"type_filter":"DOT_SVG",

"input_image_0": "rwt",
"output_image_0": "dot_svg",
"input_image_1": "contrast",
"dot_type":"default",
"modulate_dot_size":"false",
"min_dot_size":"default",
"max_dot_size":"default"

Domingo Martin®

24 Using Stippleshop

Fie

Nodedior | Results

~ Stippling
Example
Structure
Stipplin
~ Halfioring
Ostromoukhov
ContrastAware:
ace Fllng Curve:

d Grayse.
Avare
y Example

~ Combination
Combination
~ Measure
Measure SSIM PSR

add

Fle

Node Edtor | Results

images | Fiters
contrast
it

dotsig
Dot ype (For SVG saving)
crcle -
Moduate dotsize
¥ Moduate dot size

Min dotsize

1

Max ot size

Number ofdots

savesva fie

Figure 2.3: Example 3.

Domingo Martin ©

2.4 Results 25

2.4.4 Example 4

This effect improves the contrast of the input image, then a halftoning based on Otro-
moukhov’s method is obtained, and finally, a final version is produced by using the Example-
Based Grayscale method.

"effect":

"type_filter":"CONTRAST",

"input_image_0": "GRAY",
"output_image_0": "contrast",
"input_image_1": "NULL",
"contrast":"default",

"bright":"default"

"type_filter": "RWT",
"input_image_O0": "contrast",
"output_image_0": "rwt",
"input_image_1": "NULL"

"type_filter":"DOT_SVG",

"input_image_0": "rwt",
"output_image_0": "dot_svg",
"input_image_1": "contrast",
"dot_type":"default",
"modulate_dot_size":"false",
"min_dot_size":"default",
"max_dot_size":"default"

Domingo Martin®

26 Using Stippleshop

Fie

odeEsor | nans |

[Fher]
~Sippin
Structure Avare
Stppling By Example
~ Halftoning
‘Ostromoukhov

Contrast-Aware
Space Filing Curve
‘Adaptive Clustering Se.
~ Placement
Weigthed Centroldal V.
Recursiva Wang Tiing

. o “CoNTRAST HALFTONING_OST STIPPLING EBG
ots types contrast halftoning_ost.0 stppling_ebg 1
DotE8s. GRAY & 3 m
Dot VG ot " N B . a .
v conmast o Coi i

‘Contrast right

Retinex
~ dges detectors
Canny

~ B
- Effect

Inversion
Thieshokd

~ Measure
Measure SSIM PSR

add

Fie

Nodestor | resus |

Images | Fiters

sippling_ebg_1

Displacement ramdomness.
025
0 ———,
Number of dots

0477

Figure 2.4: Example 4.

Domingo Martin®

Filters

3.1 General definition

Each filter is a blackbox with one or two input images and one output image. Also, it
contains a set of parameters. The filter applies an algorithm or an effect to the input images
to produce a result, which is placed on the output image.

Notice that both the images and the filters are identified by their names. For the sake of
simplicity, the name of the output image is the same name of the filter that generates it.

This way it is easier to find the image in the image tab, or the parameters of the filter in the
Filters tab.

When an image is loaded, one RGB and one grayscale versions are created. Take into
account that if a grayscale image is loaded an RGB version of the same image will be
created too (the internal format for the RGB is a 3-channel color image).

The name of the RGB image version is "COLOR". The name of the grayscale version is
"GRAY". One of them must be the input of at least one filter.

In order to create an effect it is important to remark that the name of an input image MUST
be defined before it is used. This implies that we must follow a temporal order. This order
is from left to right.

Taking this idea into account, it is simple to realize that when a filter has changed (this
is, one parameter has been modified), not only the result of such filter change but also the
following connected filters. In order to improve the performance of the algorithms, the
slower filters should be placed at the beginning of the effect if that is possible.

Most of the filters are defined to work with a grayscale image, and produce another grayscale
image. In the case that the input is an RGB image but the filter needs a grayscale input, the
conversion is done automatically. In the same way, the conversion from a color image to a
grayscale image is done automatically by the software.

The second input image of those filters that actually only requires one input image must be
declared as "NULL";

Domingo Martin®

28 Filters

3.2 JSON format

Filters and their composition can be defined using a JSON text file.

Every effect file must follow the JSON definition. For this program, the filters are included
as an array. The format for one filter is as follows:

{
"effect":
[
{
filter data
}
]
}

There are one or more filters between the brackets. Each filter is included between braces.
Remember that each filter is separated form the next one with a comma: {... },{... }....

The information of the filter is given with the next fields delimited by braces:

"type_filter"
"input_image_0"
"output_image_0"
"input_image_1"

These fields are mandatory. A colon is used to separate each field and the value, and notice
that values are delimited with double-quotation marks. For example:

"input_image_0":"COLOR".

Each filter can have from 0 to N parameters. They will be placed at the end of the filter
definition. In the case that we want to give the default value, it must be used the "default"”
tag.

Note that we usually write a text file following some order for a better comprehension,
but JSON format is order free, so the order may change when our program writes the file.
Anyway, it should not affect the result though it probably will result in a harder to read file.

3.3 Categories

Our filters are grouped into nine categories:

Domingo Martin ©

3.4 Placement and Stippling 29

e Placement and Stippling
e Halftoning

e Dot output control

o Contrast

e Edge detectors

e Blur

o Effect

e Combination

e Measure

3.4 Placement and Stippling

3.4.1 Weighted Centroidal Voronoi Diagram

Explanation:
This filter creates a stippling image from another halftoning image by means of a Weighted
Centroidal Voronoi Diagram following Hoff’s method.

Input_image_0: grayscale image.
Channels: 1 channel — 1 channel

Parameters:

e percent_of_dots: 0—100. Percentage of dots to be used in WCVD. The percentage is
applied to a subset (35%) of the darker dots in the input image. This parameter has
priority over the number of dots. Default=25.

e number_of dots: N. Number of dots to be used in WCVD. Default=1.

e save_intermediate_images: true or false. This parameter allows to save - as images
in the WCVD folder - the intermediate stages when displacing the centroids. De-
fault=false.

Reference: Secord [1].

Example:

{

"type_filter":"WCVD",
"input_image_0": "GRAY",
"output_image_0": "wcvd",

Domingo Martin®

30 Filters

"input_image_1": "NULL",
"percent_of_dots":"10",
"number_of_dots":"default",
"save_intermediate_images":"false"

}

3.4.2 Recursive Wang Tiling

Explanation:

This filter uses the Recursive Wang Tiles method. We have used the given code but only
for the generation given the set of data. The main requirement is that input images must be
squared. Note that our custom implementation of the modulation of the dot size, as well as
the antialias algorithm, differs from the original version.

Input_image_0: grayscale image.
Channels: 1 channel — 1 channel
Parameters:

Reference: Kopf et al. [2].

Example:

{

"type_filter": "RWT",
"input_image_0O": "contrast",
"output_image_0": "rwt",
"input_image_1": "NULL"

}

3.4.3 Capacity-Constrained Voronoi Tessellation

Explanation:

This filter uses the Capacity-Constrained Voronoi Tessellation. Each final dot depends on
several points, which are used to compute the movement of the centroidals. Given the
number of dark dots of the input image, DD, the image will be represented by M, the
number of dots, but using N points per dot to compute the solution. MxN must be less or
equal to DD.

Input_image_0: grayscale image.
Channels: 1 channel — 1 channel

Parameters:

e number_of dots: M. Number of dots to be drawn. Default=1000.

Domingo Martin ©

3.4 Placement and Stippling 31

e number_of_points_per_dot": N. Number of points per dot used in the computation of
the algorithm. Default=10.

Reference: Balzer et al. [3].

Example:

{

"type_filter": "CCVT",
"input_image_0": "contrast",
"output_image_0": "ccvt",
"input_image_1": "NULL",
"number_of_dots": "default",
"number_of_points_per_dot": "default"

}

3.4.4 Example-Based Grayscale
Explanation:

This filter executes an Example-Based Grayscale.
Input_image_0: grayscale image.

Channels: 1 channel — 1 channel

Parameters:

o displacement_ramdomness: 0-1. Amount of dispersion when displacing the dots ran-
domly (percentage of the medium size). Default=0.25.

Reference: Martin et al. [6, 7].

Example:

{

"type_filter": "STIPPLING_EBS",
"input_image_0": "halftoning_ost",
"output_image_0": "stippling_ebs",
"input_image_1": "NULL",
"displacement_ramdomness":"default"

}

3.4.5 Structure-Aware

Explanation:
This filter uses Structure-Aware Stippling. It is an approximation of the original method.

Domingo Martin®

32 Filters

The priority list has been replaced by a random selection for the sake of the performance of
the algorithm. Nevertheless, the result is very similar to the original.

Input_image_0: grayscale image.
Channels: 1 channel — 1 channel

Parameters:

kernel_size: 3—15. Default=7.

exponent: 1-5. Default=2.0.
o g+: 1-10. Default=5.
o g-: 1-10. Default=5.

e k: 0—1. Default=0.

Reference: Li and Mould [4].

Example:

{
"type_filter":"STIPPLING_CAS",
"input_image_0": "GRAY",
"output_image_0": "stippling_cas",
"input_image_1": "NULL",
"kernel size":"default",
"exponent":"default",
"g+":"default",

"g-":"default",

"k":"default"

}

3.4.6 Stippling by Example

Explanation:

This filter implements Stipling by example. It is a pretty complex algortihm with different
stages. We have taken the given code and used only the rendering part. We had adjusted it
to use cv::Mat from OpenCV.

Input_image_0: grayscale image.
Channels: 1 channel — 1 channel

Parameters:

e save_intermediate_results: true or false. It saves the intermediate results (default
false)

Domingo Martin ©

3.5 Halftoning 33

e combine_edges: true or false. It combines the edges image (default false)

e post_processing: true or false. It postprocesses the image to improve it (default true)

Reference: Kim et al. [5].

Example:

{

"type_filter": "STIPPLING_SBE",
"input_image_0": "GRAY",
"output_image_0": "stippling_sbe",
"input_image_1": "NULL",
"save_intermediate_results":"default",
"combine_edges":"default",
"post_processing":"default"

}

3.5 Halftoning

3.5.1 Halftoning Ostromoukhov

Explanation:

This filter produces a halftone from a gray input image using Ostromoukhov’s method.
Input_image_0: grayscale image.

Channels: 1 channel — 1 channel

Parameters:

Reference: Ostromoukhov [8].

Example:

{

"type_filter": "HALFTONING_OST",
"input_image_0": "combination4",
"output_image_0": "halftoning_ost",
"input_image_1": "NULL"

}

3.5.2 Contras-Aware Halftoning

Explanation:
This filter produces the halftoning from a gray input image using Mould (Contrast-Aware).
It is an approximation to the original method. The priority list has been replaced by a

Domingo Martin®

34

Filters

random selection for the sake of efficiency of the algorithm. Nevertheless, the result is very

similar to the original.
Input_image_0: grayscale image.
Channels: 1 channel — 1 channel
Parameters:

e kernel_size: 3—15. Default=7.

e exponent: 1-5. Default=2.6.

Reference: Li and Mould [9].

Example:

{

"type_filter": "HALFTONING_CAH",
"input_image_0": "combination4d",
"output_image_0": "halftoning_cah",
"input_image_1": "NULL",

"kernel_ _size":"default",
"exponent":"default"

}

3.5.3 Space Filling Curve Halftoning

Explanation:

This filter produces a halftone from a gray input image using a space filling curve (see Wong

and chi Hsu [11], Velho and Gomes [10]).
Input_image_0: grayscale image.
Channels: 1 channel — 1 channel

Parameters:

e cluster_size: 1-256. Default=9.

Reference: Velho and Gomes [10] and Wong and chi Hsu [11].

Example:

{

"type_filter": "HALFTONING_SFC",
"input_image_0": "GRAY",
"output_image_0": "halftoning_sfc",
"input_image_1": "NULL",

"cluster _size":"default"

}

Domingo Martin ©

3.6 Dot output control 35

3.5.4 Adaptive Clustering and Selective Precipitation Halftoning

Explanation:
This filter produces a halftone from a gray input image using a space filling curve with
adaptive clustering and selective precipitation (see Wong and chi Hsu [11]).

Input_image_0: grayscale image.
Channels: 1 channel — 1 channel

Parameters:

cluster_size: 1-256. Default=9.

threshold: 0-600. Default=100.

adaptive_clustring: true or false. Default=true.

selective_precipitation: true or false. Default=true.

Reference: Wong and chi Hsu [11].

Example:

{

"type_filter": "HALFTONING_ACSP",
"input_image_0": "GRAY",
"output_image_0": "halftoning_ascp",
"input_image_1": "NULL",
"cluster_size":"default"
"threshold": "100",
"adaptive_clustering": "true",
"selective_precipitation": "true

}

3.6 Dot output control

3.6.1 Dot EBG

Explanation:
This filter uses scanned dots to draw each black pixel of the input image.

Input_image_0: Image with black pixels. Each black pixel will be drawn as a dot.
Input_image_1: Optional. Grayscale image that modulates the size of the dots.

Channels: 1 channel — 1 channel

Parameters:

Domingo Martin®

36 Filters

e pixel_density: 300PPI, 600PPI, 1200PPI. The pixel density of the dots. Default=300PPI

e modulate_dot_size: true or false. The size of dots is modulated depending on the tone
of the input image. Default=false.

e black_dots: true or false. if the dots are drawn in black color only. Default=false;

e black_treshold:0-255. Treshold that binarizes the image to black and to white. If the
value of the input pixel is greater or equal to this threshold value, the output pixel will
be black; otherwise it will become white. Default=220;

Reference: Martin et al. [6].

Example:

{

"type_filter":"DOT_EBS",
"input_image_0": "wcvd",
"output_image_0": "dot_ebs",
"input_image_1": "contrast",
"pixel_density":"300PPI",
"modulate_dot_size":"false",

"black_dots":"false",
"black_threshold":"default"
}

3.6.2 Dot SVG

Explanation:

This filter applies vectorial dots (SVG) to each black pixel of the input image. This can only
be obtained by saving the result. The rendered image is an raster approximation (dots are
displayed using OpenCV).

Input_image_0: Image with black pixels. Each black pixel will be drawn as a dot.
Input_image_1: Optional. Grayscale image used to modulate the size of the dots.

Channels: 1 channel — 1 channel

Parameters:

e dot_type: circle, star, at (@). Default=circle.

e modulate_dot_size: true or false. The size of dots is modulated depending on the tone
of the input image. Default=false.

Reference:

Example:

Domingo Martin ©

3.7 Contrast

37

{

"type_filter":"DOT_SVG",
"input_image_0": "wcvd",
"output_image_0": "dot_svg",
"input_image_1": "contrast",
"dot_type":"default",
"modulate_dot_size":"false"

}

3.7 Contrast

3.7.1 Contrast-Bright

Explanation:

This filter changes the contrast and bright of the input image.
Input_image_0: grayscale image.

Channels: 1 channel — 1 channel

Parameters:

e contrast: 0.1-5. Factor of contrast (multiplier weight). Default=1.0;

e bright: -255-255. Factor of brightness (additional intensity). Default=0;

Reference:

Example:

{

"type_filter": "CONTRAST",
"input_image_0": "GRAY",
"output_image_0": "contrast",
"input_image_1": "NULL",
"contrast":"default",

"bright":"default"
}

3.7.2 Retinex

Explanation:

This filter enhances the local contrast. Based on the retinex theory.
Input_image_0: color image.

Channels: 3 channels — 1 channel

Domingo Martin®

38 Filters

Parameters:
e color_restoration_variance: 0-4. Default=1.

Reference: Land [12]

Example:

{

"type_filter": "RETINEX",
"input_image_0": "COLOR",
"output_image_0": "retinex",
"input_image_1": "NULL",

"color restoration variance":"default"

}

3.8 Edge detectors

3.8.1 Canny

Explanation:
This filter extracts the silhouettes from a gray image using Canny.

Input_image_0: grayscale image.
Channels: 1 channel — 1 channel

Parameters:

e kernel_size: 3, 5, 7. Default=3.
e threshold1: 0-255. Default=100.
e threshold2: 0-255. Default=200.

Reference: Canny [13].

Example:

{

"type_filter": "CANNY",
"input_image_0": "GRAY",
"output_image_0": "canny",
"input_image_1": "NULL",
"kernel_ size":"default",

"thresholdl":"default",
"threshold2":"default"

}

Domingo Martin ©

3.8 Edge detectors 39

3.8.2 DoG

Explanation:
This filter produces a Difference of Gaussians (DoG).

Input_image_0: grayscale image.
Channels: 1 channel — 1 channel

Parameters:

e umbral: 0-255. Default=250.
e kernel_size_big: 0-255. Default=25.

e kernel_size_small: 0-255. Default=3.

Reference: Marr [14].

Example:

{

"type_filter": "DOG",
"input_image_0": "retinex",
"output_image_0": "dog_high",
"input_image_1": "NULL",
"umbral":"default",
"kernel_size_big":"default",
"kernel size_ _small":"default"

}

3.8.3 DoG with borders

Explanation:
This is a version of DoG that only shows the border of the selected zones.

3.84 Kang

Explanation:
This filter produce an imge with the edges and borders of the image using Kang’s method.

Input_image_0: color image.
Channels: 3 channels — 1 channel
Parameters:

Reference: Kang et al. [15].

Example:

Domingo Martin®

40

Filters

{
"type_filter":"KANG",

"input_image_0": "COLOR",
"output_image_0": "kang",
"input_image_1": "NULL"

}

3.9 Blur

3.9.1 Gaussian

Explanation:

This filter blurs the image by means of a Gaussian kernel.

Input_image_0: grayscale image.
Channels: 1 channel — 1 channel

Parameters:
e kernel_size:1-255. Default=1.

Reference:

Example:

{
"type_filter":"GAUSSIAN",

"input_image_0": "GRAY",
"output_image_0": "gaussian",
"input_image_1": "NULL",
"kernel size":"default"

}

3.10 Effect

3.10.1 Inversion

Explanation:

This filter inverts the intensity of the input image.

Input_image_0: grayscale image.
Channels: 1 channel — 1 channel

Parameters:

Domingo Martin ©

3.10 Effect

41

Reference:

Example:

{

"type_filter": "INVERSION",
"input_image_0": "GRAY",
"output_image_0": "inversion",
"input_image_1": "NULL"

}

3.10.2 Threshold

Explanation:
This filter applies a binary threshold.

Input_image_0: grayscale image.
Channels: 1 channel — 1 channel

Parameters:

e type: binary,binary_inverted,truncated,to_zero,to_zero_inverted. Default=binary.

e threshold: 0-255. Default=128.

e max_binary_value: 0-255. This value is applied as the maximum. Default=255.

Reference:

Example:

{

"type_filter": "THRESHOLD",
"input_image_0": "GRAY",
"output_image_0": "threshold",
"input_image_1": "NULL",

"type":"binary",
"threshold":"128",
"max_binary_value":"255"

}

3.10.3 Dilation

Explanation:
This filter produces a dilation.

Input_image_0: grayscale image.

Domingo Martin®

42 Filters

Channels: 1 channel — 1 channel

Parameters:

e kernel size:1-25. Default=1.

e iterations:0-15. Default=0.

Reference:

Example:

{

"type_filter":"DILATION",
"input_image_0": "GRAY",
"output_image_0": "dilation",
"input_image_1": "NULL",
"kernel_size":"default",
"iterations":"default"

}

3.10.4 Distance field

Explanation:

This filter computes the distance field using the jump flooding method implemented in the
CPU. When the distance fied is obtained it is converted to bands of white and black using
the division between a value and the module 2. That is:

Value=Distance_field(x,V)
Value=Value/Line_width;

if ((int)Value%2==0) draw(Black)
else draw (White)

Input_image_0: grayscale image.
Channels: 1 channel — 1 channel

Parameters:

e line_width: 1-10. Indicates the width of the obtained black and white lines. De-
fault=3.

Reference:

Example:

{

Domingo Martin ©

3.11 Combination 43

"type_filter": "DISTANCE_FIELD",
"input_image_0": "GRAY",
"output_image_0": "field distance",
"input_image_1": "NULL",

"line_width":"default"
}

3.11 Combination

3.11.1 Combination

Explanation:
This filter combines two input images using an arithmetic or logical operation.

Input_image_0: grayscale image.
Input_image_1: grayscale image.

Channels: 1 channel — 1 channel

Parameters:

e operation: product, add, and, or, sub. Default=product.

Reference:

Example:

{

"type_filter": "COMBINATION",
"input_image_0": "gaussian_low",
"output_image_0": "combinationl",
"input_image_1": "gaussian_medium",

"operation":"add"

}

3.12 Measure

3.12.1 Measure SSIM and PSNR

Explanation:

This filter computes the index of the SSIM and the PSNR. It is used only for computing the
measure information, so the input image is copied to the output image. The obtained values
are shown in the parameters zone of the filter (in the Filters tab).

Input_image_0: grayscale image.
Input_image_1: grayscale image.

Domingo Martin®

44 Filters

Channels: 1 channel — 1 channel
Parameters:

Reference: Wang et al. [16].

Example:

{

"type_filter": "MEASURE_SSIM_PSNR",
"input_image_0": "stippling_rwt",
"output_image_0": "measure_ssim_psnr",
"input_image_1": "GRAY"

}

3.13 Examples
Now some examples:

1. We want to obtain the stippling with the example-based method. It is necessary to
produce a halftoning image.

"effect":

[

{ "type_filter": "HALFTONING_OST",
"input_image_O0": "GRAY",
"output_image_0": "halftoning_ost",
"input_image_1": "NULL"

b

{ "type_filter": "STIPPLING_EBS",
"input_image_0": "halftoning_ ost",
"output_image_0": "stippling_ebs",
"input_image_1": "NULL",

"displacement_ramdomness":"default"

2. We want to improve the global contrast of the previous example

"effect":

[
{ "type_filter": "CONTRAST",

Domingo Martin ©

3.13 Examples 45

"input_image_0": "GRAY",
"output_image_0": "contrast",
"input_image_1": "NULL",
"contrast":"default",

"bright":"default"

"type_filter": "HALFTONING_OST",
"input_image_0": "contrast",
"output_image_0": "halftoning_ost",
"input_image_1": "NULL"
"type_filter": "STIPPLING_EBS",
"input_image_0": "halftoning_ost",
"output_image_0": "stippling_ebs",
"input_image_1": "NULL",
"displacement_ramdomness":"default"

3. We want to compare Ostromoukhov’s method for halftoning with Mould’s method

"effect":

[

{ "type_filter": "HALFTONING_OST",
"input_image_0": "GRAY",
"output_image_0": "halftoning_ost",
"input_image_1": "NULL"

}y

{ "type_filter": "HALFTONING_CAH",
"input_image_0": "GRAY",
"output_image_0": "halftoning_cah",
"input_image_1": "NULL",

"kernel_ size":"default",
"exponent":"default"

4. We want to produce 2 DoG and to combine both

"effect":

Domingo Martin®

46

Filters

Domingo Martin®

"type_filter": "DOG",
"input_image_0": "GRAY",
"output_image_0": "dog_high",
"input_image_1": "NULL",
"umbral":"default",
"kernel_size_big":"15",
"kernel_size_small":"1"
"type_filter": "DOG",
"input_image_0": "GRAY",
"output_image_0": "dog_low",
"input_image_1": "NULL",
"umbral":"default",
"kernel_size_big":"45",

"kernel size_small":"23"
"type_filter": "COMBINATION",
"input_image_0": "gaussian_high",
"output_image_0": "combinationl",
"input_image_1": "gaussian_low",

"operation":"default"

Bibliography

(1]

(2]

(3]

[4]

(5]

[6]

[7]

(8]

[9]

[10]

[11]

Secord, A.. Weighted Voronoi stippling. In: Proc. NPAR. New York: ACM; 2002, p.
37-43. doi: 10.1145/508530.508537

Kopf, J., Cohen-Or, D., Deussen, O., Lischinski, D.. Recursive Wang tiles for
real-time blue noise. ACM Transactions on Graphics 2006;25(3):509-518. doi: 10.
1145/1141911.1141916

Balzer, M., Schléomer, T., Deussen, O.. Capacity-constrained point distributions:
A variant of Lloyd’s method. ACM Transactions on Graphics 2009;28(3):86:1-86:8.
doi: 10.1145/1531326.1531392

Li, H., Mould, D.. Structure-preserving stippling by priority-based error diffusion. In:
Proc. Graphics Interface. Waterloo, ON, Canada: Canadian Information Processing
Society; 2011, p. 127-134. doi: 10.20380/GI12011.17

Kim, S., Maciejewski, R., Isenberg, T., Andrews, W.M., Chen, W., Sousa, M.C,,
et al. Stippling by example. In: Proc. NPAR. New York: ACM; 2009, p. 41-50. doi:
10.1145/1572614.1572622

Martin, D., Arroyo, G., Luzén, M.V, Isenberg, T.. Example-based stippling using
a scale-dependent grayscale process. In: Proc. NPAR. New York: ACM; 2010, p.
51-61. doi: 10.1145/1809939.1809946

Martin, D., Arroyo, G., Luzén, M.V., Isenberg, T.. Scale-dependent and example-
based stippling. Computers & Graphics 2011;35(1):160-174. doi: 10.1145/1809939.
1809946

Ostromoukhov, V.. A simple and efficient error-diffusion algorithm. In: Proc. SIG-
GRAPH. New York: ACM; 2001, p. 567-572. doi: 10.1145/383259.383326

Li, H., Mould, D.. Contrast-aware halftoning. ~Computer Graphics Forum
2010;29(2):273-280. doi: 10.1111/j.1467-8659.2009.01596.x

Velho, L., Gomes, J.d.M.. Digital halftoning with space filling curves. SIGGRAPH
Comput Graph 1991;25(4):81-90. doi: 10.1145/127719.122727

Wong, T.T., chi Hsu, S.. Halftoning with selective precipitation and adaptive cluster-
ing. In: Paeth, A.W.,, editor. Graphics Gems V. Academic Press; 1995, p. 302-313.

Domingo Martin®

http://dx.doi.org/10.1145/508530.508537
http://dx.doi.org/10.1145/1141911.1141916
http://dx.doi.org/10.1145/1141911.1141916
http://dx.doi.org/10.1145/1531326.1531392
http://dx.doi.org/10.20380/GI2011.17
http://dx.doi.org/10.1145/1572614.1572622
http://dx.doi.org/10.1145/1572614.1572622
http://dx.doi.org/10.1145/1809939.1809946
http://dx.doi.org/10.1145/1809939.1809946
http://dx.doi.org/10.1145/1809939.1809946
http://dx.doi.org/10.1145/383259.383326
http://dx.doi.org/10.1111/j.1467-8659.2009.01596.x
http://doi.acm.org/10.1145/127719.122727

48 BIBLIOGRAPHY

[12] Land, E.H.. The retinex theory of color vision. Scientific American 1977;237(6):108—
128.

[13] Canny, J.. A computational approach to edge detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence 1986;8(6):679—698. doi: 10.1109/TPAMI.1986.
4767851

[14] Marr, D.. Vision. The MIT Press; 1982. ISBN 978-0-262-51462-0.

[15] Kang, H., Lee, S., Chui, C.K.. Flow-based image abstraction. IEEE Visualization &
Computer Graphics 2009;15(1):62-76. doi: 10.1109/TVCG.2008.81

[16] Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.. Image quality assessment:
From error visibility to structural similarity. Trans Img Proc 2004;13(4):600-612. doi:
10.1109/T1P.2003.819861

Domingo Martin ©

http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1109/TVCG.2008.81
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/TIP.2003.819861

	General information
	Copyright
	Introduction
	Functionality
	Software included

	Using Stippleshop
	Working pipeline
	Limitations
	A step by step example
	Results
	Example 1
	Example 2
	Example 3
	Example 4

	Filters
	General definition
	JSON format
	Categories
	Placement and Stippling
	Weighted Centroidal Voronoi Diagram
	Recursive Wang Tiling
	Capacity-Constrained Voronoi Tessellation
	Example-Based Grayscale
	Structure-Aware
	Stippling by Example

	Halftoning
	Halftoning Ostromoukhov
	Contras-Aware Halftoning
	Space Filling Curve Halftoning
	Adaptive Clustering and Selective Precipitation Halftoning

	Dot output control
	Dot EBG
	Dot SVG

	Contrast
	Contrast-Bright
	Retinex

	Edge detectors
	Canny
	DoG
	DoG with borders
	Kang

	Blur
	Gaussian

	Effect
	Inversion
	Threshold
	Dilation
	Distance field

	Combination
	Combination

	Measure
	Measure SSIM and PSNR

	Examples

