Computer Graphics

Curves and Smooth Surfaces
Curves and Smooth Surfaces

• object representations so far
 – polygonal meshes (shading)
 – analytical descriptions (raytracing)
• flexibility vs. accuracy
• now: flexible yet accurate representations
 – piecewise smooth curves: \textit{Bézier curves, splines}
 – smooth (freeform) surfaces
 – subdivision surfaces
Again, why do we need all this?

• not only representation, but also **modeling**
• and it’s all about cars! shiny cars! 😊
Curves and Smooth Surfaces

Curves
Specifying Curves

- **functional descriptions**
 - \(y = f(x) \) in 2D;
 for 3D also \(z = f(x) \)
 - cannot have loops
 - functions only return one scalar, bad for 3D
 - difficult handling if it needs to be adapted

- **parametric descriptions**
 - independent scalar parameter \(t \in \mathbb{R} \)
 - typically \(t \in [0, 1] \), mapping into \(\mathbb{R}^2 / \mathbb{R}^3 \)
 - point on the curve: \(P(t) = (x(t), y(t), z(t)) \)
Polynomial Parametric Curves

- **use control points** to specify curves

- n control points for a curve segment

- set of **basis** or **blending functions**:

$$P(t) = \sum_{i=0}^{n} P_i B_{i,n}(t)$$
Interpolating vs. Approximating

- two different curves schemes: curves do not always go through all control points
 - approximating curves
 not all control points are on the resulting curve
 - interpolating curves
 all control points are on the resulting curve
Curves and Smooth Surfaces

Bézier Curves
Bézier Curves: Blending Functions

- formulation of curve: \(P(t) = \sum_{i=0}^{n} P_i B_{i,n}(t) \)

- \(B_{i,n} \) – Bernstein polynomials
 (control point weights, depend on \(t \)):
 \[
 B_{i,n}(t) = \binom{n}{i} t^i (1-t)^{n-i} = \frac{n!}{i! (n-i)!} t^i (1-t)^{n-i}
 \]

- Bézier curve example for \(n = 3 \):
 \[
 P(t) = P_0 B_{0,3}(t) + P_1 B_{1,3}(t) + P_2 B_{2,3}(t) + P_3 B_{3,3}(t)
 = P_0 (1-t)^3 + P_1 3t(1-t)^2 + P_2 3t^2(1-t) + P_3 t^3
 \]
Bernstein Polynomials Visualized

\[P(t) = P_0 (1 - t)^3 + P_1 3t(1 - t)^2 + P_2 3t^2(1 - t) + P_3 t^3 \]
De Casteljau’s Algorithm

• algorithm by Paul de Casteljau
 trivia: original inventor of Bézier curves (in 1959); Pierre Bézier just publicized them widely in 1962; both working for French car makers (Citroën & Renault)

• geometric & numerically stable way to evaluate the polynomials in Bézier curves
De Casteljau’s Algorithm

• algorithm by Paul de Casteljau

 trivia: original inventor of Bézier curves (in 1959); Pierre Bézier just publicized them widely in 1962; both working for French car makers (Citroën & Renault)

• geometric & numerically stable way to evaluate the polynomials in Bézier curves

\[t = 0.25 \]
\[t = 0.75 \]
De Casteljau’s Algorithm

• algorithm by Paul de Casteljau

 trivia: original inventor of Bézier curves (in 1959); Pierre Bézier just publicized them widely in 1962; both working for French car makers (Citroën & Renault)

• geometric & numerically stable way to evaluate the polynomials in Bézier curves

\[t = 0.25 \quad t = 0.75 \]
De Casteljau’s Algorithm

• algorithm by Paul de Casteljau
 trivia: original inventor of Bézier curves (in 1959); Pierre Bézier just publicized them widely in 1962; both working for French car makers (Citroën & Renault)

• geometric & numerically stable way to evaluate the polynomials in Bézier curves

\[
\begin{align*}
 t &= 0.25 \\
 t &= 0.75
\end{align*}
\]
De Casteljau’s Algorithm

- algorithm by Paul de Casteljau

 trivia: original inventor of Bézier curves (in 1959); Pierre Bézier just publicized them widely in 1962; both working for French car makers (Citroën & Renault)

- geometric & numerically stable way to evaluate the polynomials in Bézier curves
De Casteljau’s Algorithm

- algorithm by Paul de Casteljau

trivia: original inventor of Bézier curves (in 1959); Pierre Bézier just publicized them widely in 1962; both working for French car makers (Citroën & Renault)

- geometric & numerically stable way to evaluate the polynomials in Bézier curves

\[t = 0.25 \]
\[t = 0.75 \]
De Casteljau’s Algorithm

- algorithm by Paul de Casteljau

 trivia: original inventor of Bézier curves (in 1959); Pierre Bézier just publicized them widely in 1962; both working for French car makers (Citroën & Renault)

- geometric & numerically stable way to evaluate the polynomials in Bézier curves

$t = 0.25$

$t = 0.75$
De Casteljau’s Algorithm
Bézier Curves: Examples
Bézier Curves: Example & $B_{i,n}$
Bézier Curves: Properties

• curve always inside the **convex hull** of the control polygon – why?
 \[\sum_{i=0}^{n} B_{i,n}(t) = 1 \quad \forall t \in [0,1] \]

• **approximating** curve: only first & last control points are interpolated – why?

• each control point affects the entire curve, **limited local control**
 \[\rightarrow \] problem for modeling
Piecewise Smooth Curves

• low order curves give sufficient control

• \textit{idea}: connect segments together
 – each segment only affected by its own control points \rightarrow local control
 – make sure that segments connect smoothly

• \textit{problem}: what are smooth connections?
Continuity Criteria

• a curve s is said to be C^n-continuous if its n^{th} derivative $d^n s/dt^n$ is continuous of value
 → **parametric continuity**: shape & speed
• not only for individual curves, but also *and in particular* for where segments connect
• **geometric continuity**: two curves are G^n-continuous if they have proportional n^{th} derivatives (same direction, speed can differ)
• G^n follows from C^n, but not the other way
• car bodies need at least G^2-continuity
Continuity Criteria: Examples

\[G^0 = C^0 \]

\[G^1 \]

\[C^1 \]
Curves and Smooth Surfaces

Splines
Splines

- term from manufacturing (cars, planes, ships, etc.): metal strips with weights or similar attached
- mathematically in cg: composite curves that are composed of polynomial sections and that satisfy specified continuity conditions
- Bézier curves are one class of splines
B-Splines

• Bézier curves: global reaction to change
• goal: find curve that provides local control
• idea: approximating curve with many control points where only a few consecutive control points have local influence:
B-Splines

- mathematical formulation (n+1 control pts):
 \[P(t) = \sum_{i=0}^{n} P_i B_{i,d}(t) \quad 1 \leq d \leq n \]

- recursive definition of \(B_{i,d}(t) \):

 \[
 B_{i,0}(t) = \begin{cases}
 1 & \text{if } t_i \leq t \leq t_{i+1} \\
 0 & \text{otherwise}
 \end{cases}
 \]

 \[
 B_{i,d}(t) = \frac{t - t_i}{t_{i+d-1} - t_i} B_{i,d-1}(t) + \frac{t_{i+d} - t}{t_{i+d} - t_{i+1}} B_{i+1,d-1}(t)
 \]

- recursive definition of \(B_{i,d} \)
- \(B_{i,d} \) only non-zero for certain range (knots)
- range of each \(B_{i,d} \) grows with degree
B-Splines

degree: 1
B-Splines

degree: 2
B-Splines

degree: 3
B-Splines vs. Bézier Curves
B-Splines vs. Bézier Curves

cubic B-spline

degree 5 B-spline and Bézier curve
NURBS

- knots can be non-uniformly spaced in the parameter space
- additional scalar weights for control points
- Non Uniform Rational Basis Spline:
 \[P(t) = \sum_{i=0}^{n} \frac{h_i \cdot P_i \cdot B_{i,d,k}(t)}{\sum_{i=0}^{n} h_i \cdot B_{i,d,k}(t)} \]
 - “rational” refers to ratio, i.e., a quotient
 - can also represent, e.g., conic sections
Interpolating Curves

• how to specify smooth curves that interpolate control points?

• idea: use 4 control points to specify an interpolating curve between the middle 2

• example: Cardinal splines:

\[P(t) = P_{k-1} \text{Car}_0(t) + P_k \text{Car}_1(t) + P_{k+1} \text{Car}_2(t) + P_{k+2} \text{Car}_3(t) \]

• curve defined from \(P_k \) to \(P_{k+1} \);
 \(P_{k-1} \) & \(P_{k+1} \) as well as \(P_k \) & \(P_{k+2} \) define tangents:

Hearn & Baker 2004
Cardinal Splines

- Car_i – cubic polynomial blending functions:

\[P(t) = P_{k-1}(-s \ t^3 + 2s \ t^2 - s \ t) + \]
\[P_k((2 - s) \ t^3 + 2(s - 3) \ t^2 + 1) + \]
\[P_{k+1}((s - 2) \ t^3 + (3 - 2s) \ t^2 + s \ t) + \]
\[P_{k+2}(s \ t^3 - s \ t^2) \]

\[s = \frac{1 - \text{tension}}{2} \]

- tension parameter to control curve path and overshooting

Hearn & Baker 2004
Cardinal Splines: Examples

Hearn & Baker 2004
Cardinal Splines: Examples

Hearn & Baker 2004
Cardinal Splines: Examples

Hearn & Baker 2004
Open vs. Closed Cardinal Splines

- **open curves** need extra control points to specify the boundary conditions
- for **closed curves** no boundary conditions necessary, treat as never-ending curve

Hearn & Baker 2004
Curves and Smooth Surfaces

Freeform Surfaces
Freeform Surfaces

- base surfaces on parametric curves
- Bézier curves \rightarrow Bézier surfaces/patches
- spline curves \rightarrow spline surfaces/patches
- mathematically:
 application of curve formulations
 along two parametric directions
Freeform Surfaces: Principle

- Bézier surface: control mesh with $m \times n$ control points now specifies the surface:

$$P(u, v) = \sum_{j=0}^{m} \sum_{i=0}^{n} P_{j,i} B_{j,m}(v) B_{i,n}(u)$$
Freeform Surfaces: Examples
Freeform Surfaces: Examples
Trivia: The Utah Teapot

- famous model used early in CG
- modeled from Bézier patches in 1975
- is even available in GLUT
- used frequently in CG techniques as an example along with other “famous” models like the Stanford bunny
The Utah Teapot
Freeform Surfaces: How to Render?

• freeform surface specification yields
 – points on the surface (evaluating the sums)
 – order of points (through parameter order)

• extraction of approximate polygon mesh
 – chose parameter stepping size in u and v
 – compute the points for each of the steps
 – create polygon mesh using the inherent order

• can be created as detailed as necessary
Curves and Smooth Surfaces

Subdivision Surfaces
Subdivision Surfaces

• but we already have so many polygon models, is there anything we can do?
• sure there is: subdivision surfaces!
• basic idea:
 – model coarse, low-resolution mesh of object
 – recursively refine the mesh using rules
 – use high-resolution mesh for rendering
 – limit surface should have continuity properties and is typically one of the freeform surfaces
Subdivision Surfaces: Example
Subdivision Surfaces: Example
Subdivision Surfaces: Example
Subdivision Surfaces: Example
Subdivision Schemes for Surfaces

• quad-based vs. triangle-based subdivision
• quad-based subdivision
 – Doo-Sabin
 – Catmull-Clark
 – Kobbelt
• triangle-based subdivision
 – Loop
 – (modified) butterfly
 – $\sqrt{3}$
Face Splitting vs. Vertex Splitting

- **face splitting**: faces directly subdivided:

- **vertex splitting**: vertices are “split”
Position of New Vertices

- positions computed based on weighted averages from neighbouring original vertices or new vertices
- each scheme has its own weights (look up for implementation)
- special weights for sharp edges or borders
- extraordinary vertices
Doo-Sabin Subdivision

- approximating (quad mesh) vertex split
Doo-Sabin Subdivision

• approximating (quad mesh) vertex split
Doo-Sabin Subdivision

• approximating (quad mesh) vertex split
Doo-Sabin Subdivision

• approximating (quad mesh) vertex split
Doo-Sabin Subdivision

- approximating (quad mesh) vertex split
Doo-Sabin Subdivision

- approximating (quad mesh) vertex split
Doo-Sabin Subdivision

- approximating (quad mesh) vertex split
Doo-Sabin Subdivision

• approximating (quad mesh) vertex split

• example:
Catmul-Clark Subdivision

• approximating quad mesh face-split
Catmull-Clark Subdivision

- approximating quad mesh face-split
Catmull-Clark Subdivision

- approximating quad mesh face-split
Catmull-Clark Subdivision

• approximating quad mesh face-split
Catmull-Clark Subdivision

• approximating quad mesh face-split
Catmull-Clark Subdivision

- approximating quad mesh face-split

- example:
Kobbelt Subdivision

• interpolating quad-mesh face-split

• using different weights than the Catmull-Clark scheme
Kobbelt Subdivision

- interpolating quad-mesh face-split

- using different weights than the Catmull-Clark scheme
Kobbelt Subdivision

- interpolating quad-mesh face-split

- using different weights than the Catmull-Clark scheme
Kobbelt Subdivision

- interpolating quad-mesh face-split

- using different weights than the Catmull-Clark scheme
Kobbelt Subdivision

- interpolating quad-mesh face-split

- using different weights than the Catmull-Clark scheme
Loop Subdivision

- approximating triangle mesh face-split
Loop Subdivision

• approximating triangle mesh face-split
Loop Subdivision

• approximating triangle mesh face-split
Loop Subdivision

• approximating triangle mesh face-split
Loop Subdivision

- approximating triangle mesh face-split
Loop Subdivision

• approximating triangle mesh face-split

• example:
Modified Butterfly Subdivision

• interpolating triangle mesh face-split, using different weights compared to Loop scheme
Modified Butterfly Subdivision

- interpolating triangle mesh face-split, using different weights compared to Loop scheme
Modified Butterfly Subdivision

- interpolating triangle mesh face-split, using different weights compared to Loop scheme
Modified Butterfly Subdivision

- interpolating triangle mesh face-split, using different weights compared to Loop scheme
Modified Butterfly Subdivision

- interpolating triangle mesh face-split, using different weights compared to Loop scheme
Modified Butterfly Subdivision

• interpolating triangle mesh face-split, using different weights compared to Loop scheme

• example:
$\sqrt{3}$ subdivision

- approximating triangle mesh face-split
$\sqrt{3}$ subdivision

- approximating triangle mesh face-split
$\sqrt{3}$ subdivision

- approximating triangle mesh face-split

![Diagram of $\sqrt{3}$ subdivision](image)
\[\sqrt{3} \text{ subdivision} \]

- approximating triangle mesh face-split
√3 subdivision

• approximating triangle mesh face-split
\[\sqrt{3} \text{ subdivision} \]

- approximating triangle mesh face-split
$\sqrt{3}$ subdivision

- approximating triangle mesh face-split
$\sqrt{3}$ subdivision

- approximating triangle mesh face-split

- only 1:3 triangle increase, not 1:4

Loop scheme:
Adaptive Subdivision

• subdivide only where detail is needed
• special care for boundary of subdivided region to maintain smooth transition
Adaptive Subdivision

Kobbelt, 1996
Subdivision and Freeform Surfaces

- Limit surfaces of subdivision have also certain continuity properties:
 - C^1: Doo-Sabin, Kobbelt, Modified Butterfly
 - C^2: Loop, $\sqrt{3}$, Catmull-Clark

- For some schemes, the limit surfaces are Bézier/spline surfaces
Application: Subdivision Modeling

• model coarse meshes as usual
• apply subdivision to get smooth surfaces
• now used often in animated features to aid the modeling of characters and objects

Pixar, 1997 / DeRose et al., 1998
Curves and Surfaces: Summary

• need to model smooth curves & surfaces
• use of control points
• polynomial descriptions
• continuity constraints C^n/G^n, important both for curves and surfaces
• surfaces from curves
• subdivision surfaces