Computer-Generated Watercolor simulation of a specific traditional medium

Tijmen Klein

Watercolor

- Unique medium
 - Contains the motion of water
 - Transparant and luminous quality
- Complex to simulate

Self portrait(1895), Paul Cézanne, Wikipedia

Watercolor

- Unique medium
 - Contains the motion of water
 - Transparant and luminous quality
- Complex to simulate

Source: http://zenkaku.huh.harvard.edu

Behavior of watercolor paint

Why study the behavior of paint?

Behavior of watercolor paint

- The paint
 - Pigment particles
 - Water
 - Binder
 - Surfactant
- The paper
 - Cotton (no wood)
 - Impregnated with sizing

Paint: pigment

- Penetrate the paper
- Varying density (small particles travel further)
- Staining power (how well does it adhere)
- Granulation / Flocculation (pigments clumping)

Source: utrechtart.com

Behavior of watercolor paint

- The effects
 - Dry Brush
 - Edge darkening
 - Backruns
 - Granulation
 - Flow patterns
 - Glazing

The Effects: Dry-brush

- Dry Brush
- Rough paper
- Depends on the height and angel of the brush

The Effects: Edge darkening

- Wet-on-dry technique
- Pigment travels to edges
 - Paper sizing
 - Surface tension

The Effects: Backruns

- Intentional effect
- Water to damp region
- Water pushes pigment

The Effects: Granulation

- Grainy texture
- Texture of paper

The Effects: Flow patterns

- Wet-on-wet technique
- Paint moves freely
- Soft shapes, that follow the water flow

The Effects: Color Glazing

- Adding up layers of color
- Wet-on-dry
- Clear and even effect

Physical Simulation

- Fluid simulation (Curtis et al.)
- Three-layer model
 - Shallow water
 - Pigment deposition
 - Capillary
- Discretized over 2D grid

Shallow-water Layer

- Water flowing across the surface
- Bounded by a 'wet-area mask'
- Lifts/caries/deposits pigments

Source: Curtis et al.

 Parameters: wet-area mask, velocity of the water, pressure of the water, concentration of pigment, slope of paper

Pigment-deposition Layer

- Adsorption and desorption of pigment
- Physical properties of pigments
 - Density
 - Staining power
 - Granularity

Capillary Layer

- Capillary flow of water through pores of paper
- Determines the wet-area mask
- Properties of the paper
 - Water saturation
 - Fluid holding capacity

Source: Curtis et al.

The Paper

- Height field (*h*)
 - Pseudo-randomly generated
- Fluid capacity field (c)

$$-c = h * (c_{max} - c_{min}) + c_{min}$$

Example paper textures, Source: Curtis et al.

The simulation

- Cellular automaton
 - Discretized 2D grid
 - Next state of cell depends state of neighbours

Source: http://blog.soulwire.co.uk/laboratory/flash/2d-cellular-automata

The simulation

- Each time step, do the following
 - Move the water
 - Move the pigments
 - Transfer pigments (between layers)
 - Simulate the capillary flow

Moving the Water

- Differential equation, using forward Euler
- Boundary conditions enforce wet-area mask
- Remove water near edges of wet-area mask (edge darkening)

Rendering

 Kubelka-Munk for optical composition of glazes

Optical composition of layers, Source: Curtis et al.

Simulated

Applications

- Interactive painting
- Automatic image "watercolorization"
 - Brushstroke planning
- NPR rendering of 3D scenes

Interactive painting, Source: Curtis et al.

Limitations

- Speed (not real-time)
- Temporal coherence ("shower door" effect)
- Input parameters

Other approaches

- Blurred depth test
 - Frame-to-frame coherence
 - Real-time (shaders)
 - 3D models as input
 - Assumptions about the models (plants)

Source: Luft, Deussen.

Other approaches

- Blurred depth test
 - Frame-to-frame coherence
 - Real-time (shaders)
 - 3D models as input
 - Assumptions about the models (plants)

Questions?

4. 1. 1. 1. 1.