Pen and Ink Advanced Computer Graphics 2011 - Florin Schimbinschi

Binary shading, stencils and calligraphic packing

Binary Shading: Inspiration

Binary shading: Techniques

□ <u>Thresholding</u>

- Above -> white
- Below -> black
- Characteristics:
 Noisy (real photos)
 Edges (artificial)

Binary shading: Techniques

- Thresholding
- Artistic Thresholding
 - Segmentation (graph)
 - Color assignment
 - Optimization (details)
 - Post-processing (edges)

Binary shading: Techniques

- Thresholding
- Artistic Thresholding
- Stylized B&W Images
 - Combined costs:
 - □ Local (detail layer)
 - Global (coarse layer)
 - Vectorized

□ Why?

- Context: coherent dark areas are depicted in black despite high illumination, occluding contours
- black or white because of:
 - □ the illumination of the shape
 - contrast between neighbor pixels
- Artists make decisions for contradictory goals

Solution:

- Model process as an optimization problem
- Graph cut energy minimization: compute the minimal cut (the globally minimal set of edges)

Representation:

- a node in the graph for each pixel
- two terminal nodes (white: source node & black: sink node)
- weighted connection to source or sink (appearance)
- weighted connection between neighbour pixels (geometry)

Procedure:

1) Rendering (ray-tracing) – generate binary arrays:

 $\mathbf{A}_i \in [0, 1]^{m \times n} \qquad \qquad \mathbf{G}_i \in [0, 1]^{m \times n}$

2) Graph construction – assign weights:

 $W[x, y] = \sum_{i} w_{i} W_{i}[x, y],$ $B[x, y] = \sum_{i} b_{i} B_{i}[x, y].$ $N[x_{0}, y_{0}, x_{1}, y_{1}] = \tilde{N} \prod_{j} N_{j}[x_{0}, y_{0}, x_{1}, y_{1}].$

Graphcut

Appearance arrays rendered from the 3D model:

Diffuse

 Lambertian reflection model, independent of viewpoint

Specular

- takes into account the viewing position
- Head lamp
 - helps separate the object from the background

Global (left) versus local (right) thresholding

Influence of edge weights: Small disconnected regions are successively connected when increasing weight

<u>Geometry</u> array:

Features:

- Depth
- Normal variation (curvature) relative to screen space

 $\frac{(z[x_0, y_0] - z[x_1, y_1])^2}{d^2}$

(b) Diffuse neighbor weights and result

(c) Geometry neighbor weights and result

(f) Geometry neighbor weights and result

(e) Diffuse neighbor weights and result

Binary shading: Stencils

NPR Packing: Lloyd's method (Voronoi)

Calligraphic Packing:

Given a "container" and a sequence of letters L, construct a nonoverlapping arrangement of deformed glyphs in the interior of the container so that:

1. The glyphs fill the container as much as possible;

2. Individual glyphs are recognizable as the corresponding letters; and

3. The order of the letters is suggested by the arrangement of the glyphs in the packing.

Approach:

- Container extraction
- Subdivision
- Warping
 - * Rendering

Approach: Initial positions and clustering result Container extraction ο αb Subdivision Warping * Rendering (a) (b) (c) Ignoring regions Ce d (a) (c) (b) Forcing clustering

(a)

(b)

(c)

Approach:

- Container extraction
- Subdivision
- Warping
 - * Rendering

opening

closing

Approach:

- Container extraction
- Subdivision
- Warping
 - * <u>Rendering</u>

Pen & Ink

References:

- Pen & Ink slides, Tobias Isenberg
- Binary Shading Using Appearance and Geometry: Bert Buchholz, Tamy Boubekeur, Doug DeCarlo and Marc Alexa, COMPUTER GRAPHICS forum Volume 29 (2010), number 6 pp. 1981–1992
- Calligraphic Packing: Jie Xu, Craig S. Kaplan, Graphics Interface, 2007

