A Brief Refreshing Course of Computer Graphics

Tobias Isenberg

The Overall Goal: Photorealism

The Second Goal: Speed and Efficiency

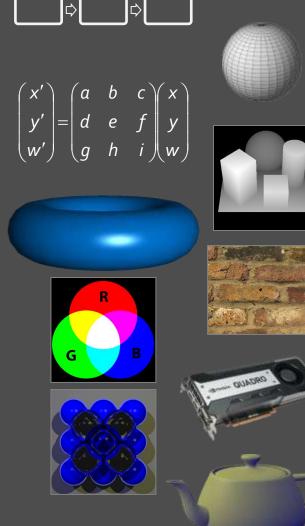
Ryse (2006);(b993)ytek/blicotsotte

A Brief Refreshing Course on Computer Graphics

Tobias Isenberg

Computer Graphics 101

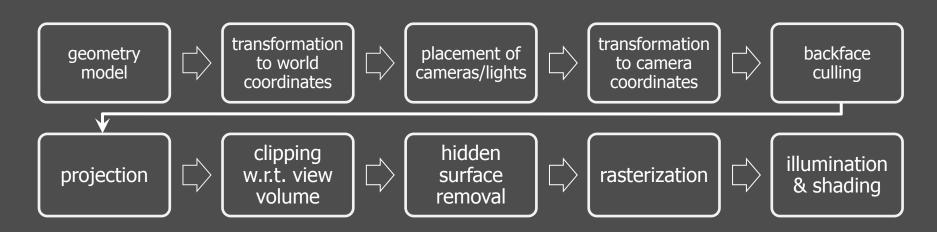
- computer graphics pipeline
- models and object representation
- transformations and projections
- hidden surface removal
- illumination and shading
- texture mapping
- color and color models
- hardware rendering
- local vs. global illumination
- curves and surfaces



Computer Graphics Pipeline

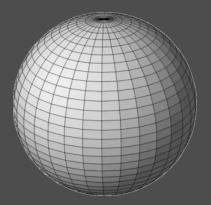
Tobias Isenberg

Computer Graphics/Rendering Pipeline



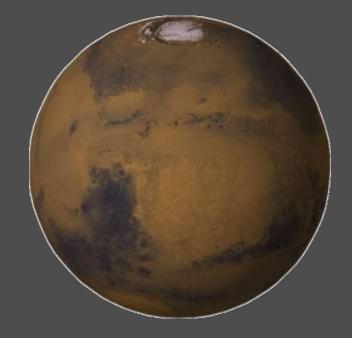
- simple model of physical processes
- independent parallel processing of triangles
- control/parameterization of the individual stages
- implementation of the specific stages in hardware

Models and Object Representation



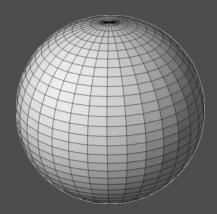
What to Specify for a 3D Shape?

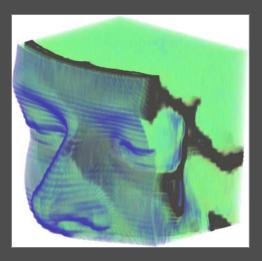
- geometry
 - shapes, positions
 - connectivity, inside/outside
- material properties
 - visuals, textures(plastic, wood, metal, etc.)
 - other material properties (elasticity, mass, etc.)
- behaviour/animation
- more depending on the specific application



How to Specify a 3D Geometry?

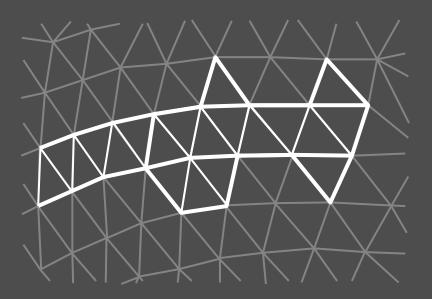
- boundary representations (b-reps)
 - meshes
 - piecewise smooth surfaces
- volume representations
 - voxel models
 - implicit surfaces
 - CSG: constructive solid geometry
 - space partitioning
 - BSP trees: binary space partitioning
 - octrees

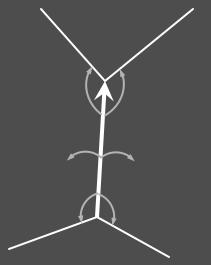




B-Reps: Polygonal Meshes

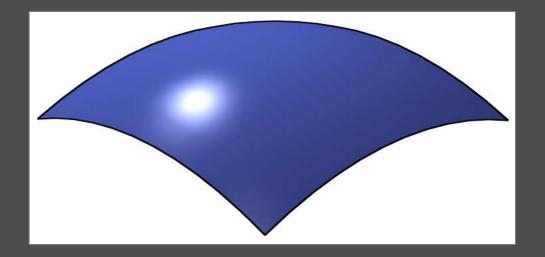
- polygons to define the surface of objects
- triangle meshes
 - polygon with fewest vertices
 - always convex & planar \rightarrow defines unique surface
- triangle strips: faster rendering
- more complex mesh data structures (e.g., Winged Edge)





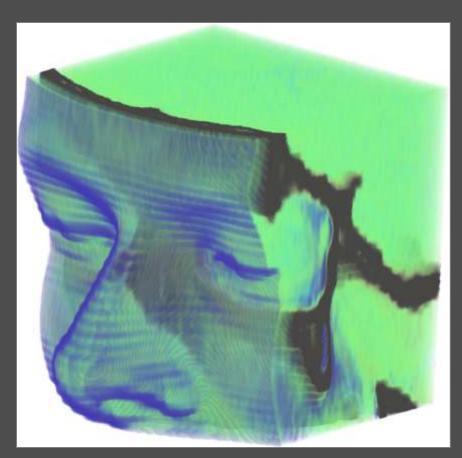
B-Reps: Piecewise Smooth Surfaces

- surface constructed from patches
- patches can be curved and are smooth
- patches satisfy a continuity constraint
- e.g., Bézier, Spline, NURBS surfaces



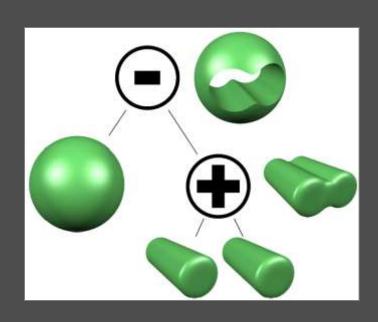
Volumes: Voxel Models

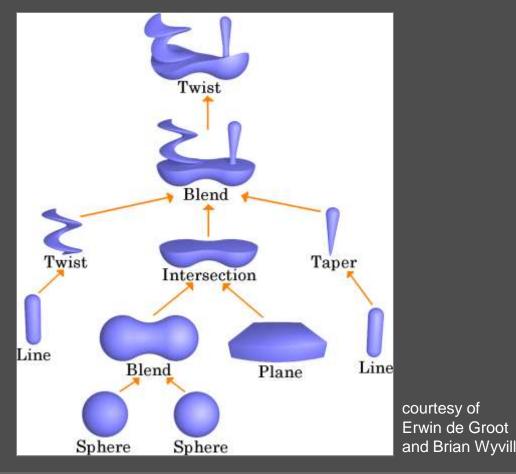
- sampling of a volume in regular intervals
- samples as cubes, or as general boxes
- several properties can be sampled
- shapes: *iso-values* define *iso-surfaces*
- heavily used in medical imaging; based on CT, MRI



Volumes: Construct. Solid Geometry

- Boolean operators to combine shapes
- unions, intersections, set differences
- build up CSG trees





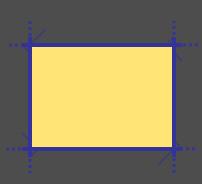
A Brief Refreshing Course on Computer Graphics

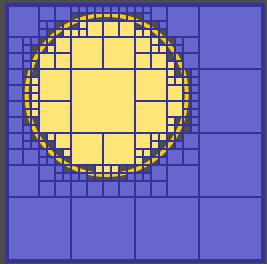
Tobias Isenberg

Graphics 101

Volumes: BSP and Octrees

- space partitioning: define sub-spaces
- **b**inary **s**pace **p**artitioning: half-spaces
 - planes define borders between inside and outside; hierarchy
 - only current subspace affected
- octrees: partitioning on regular 2×2×2 grid (= 8)
 - mark cells inside, outside, or subdivide
 - 2D case: quadtrees (2×2)





Transformations

$$\begin{pmatrix} x' \\ y' \\ w' \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} x \\ y \\ w \end{pmatrix}$$

Tobias Isenberg

Transformations

- 3D models represented as points, edges, polygons in 3D coordinate systems
 - object coordinate systems
 - world coordinate system
 - camera coordinate system
 - screen coordinate system
- transformations necessary
- foundation: geometry and linear algebra

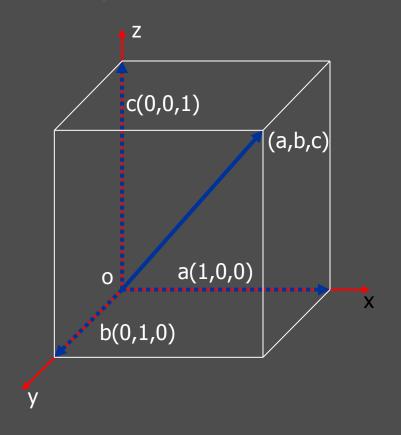
Scalars, Points, Vectors, Matrices

- scalar values: real (rational) numbers: 7.39
- points: position in nD space: (2.53, -1.78)^T
- vectors: directions in nD space
 - have no position in space
 - is linear combination of basis vectors of the vector space, e.g., $(a, b, c)^{T} = a(1, 0, 0)^{T} + b(0, 1, 0)^{T} + c(0, 0, 1)^{T}$

matrices (n × m): transformations between vector spaces

Coordinate System and Coordinates

- coordinate system: set (o, e₁, e₂, ..., e_n) consisting of point o∈Aⁿ and basis (e₁, e₂, ...,e_n) of vector space Aⁿ
- position vector v = (op)→
 for each p∈Aⁿ
- coordinates: scalar components of v with respect to (e₁, e₂, ...,e_n) v = x₁e₁+x₂e₂+...+x_ne_n
 o: point of origin

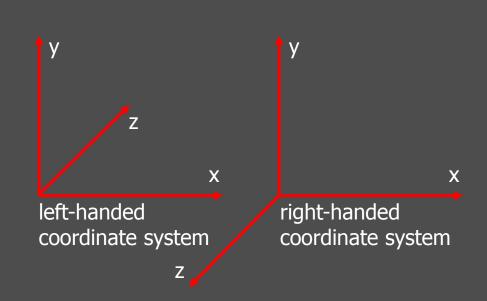


Coordinate Systems in CG: 2D & 3D

two-dimensional

• three-dimensional

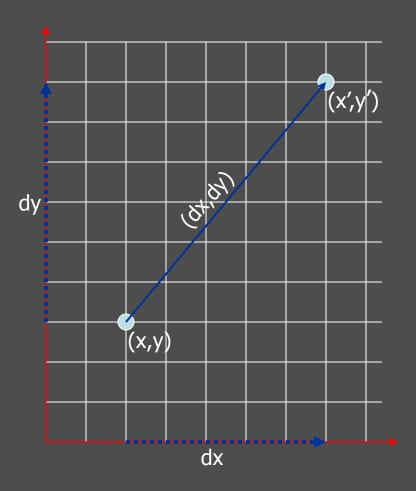
- 2 mirrored systems
- cannot be matched by rotation
- we use right-handed



X

2D Translation

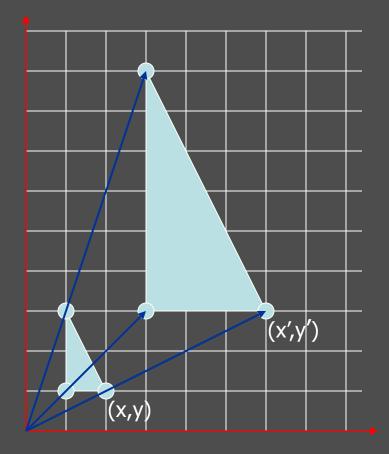
- move point (x, y)^T on a straight line to (x', y')^T
- represent translation by a translation vector that is added $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} dx \\ dy \end{pmatrix}$
- vector: movement from one point to another



2D Uniform Scaling

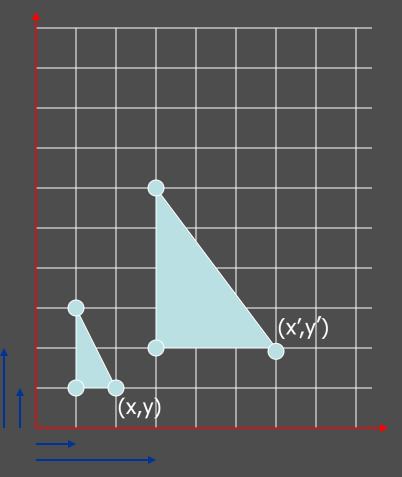
- center of scaling is o
- scaling uniformly in all directions
- stretching of (x, y)^T's position vector by scalar factor α to get (x', y')^T
- mathematically: multiplication with α

$$\binom{x'}{y'} = \alpha \binom{x}{y} = \binom{\alpha x}{\alpha y}$$



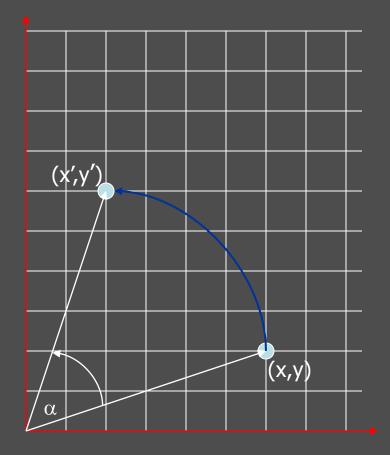
2D Non-Uniform Scaling

- center of scaling is o
- scaling in *x*-direction by α and in y-direction by β (scaling vector $(\alpha, \beta)^{\mathsf{T}}$)
- mathematically: multiplication with α and β according to axis $\left(\begin{array}{c} \alpha x \\ \beta y \end{array}\right)$
- application: mirroring



2D Rotation

- center of rotation is o
- point (x, y)^T is rotated by an angle α around o to obtain (x', y')^T
- positive angles α mean counter-clockwise rotation
- $x' = x \cos \alpha y \sin \alpha$ $y' = x \sin \alpha + y \cos \alpha$
- matrix multiplication: $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$



Transformations in 2D: Results

 translation: scaling: rotation: addition of translation vector multiplication of factor(s) matrix multiplication

- problems:
 - non-uniform treatment of transformations
 - no way to combine N transformation into one
- idea: all transformations as matrix multiplications!
- only scaling and translation to do

Scaling using 2D Matrix

- general 2D matrix multiplication format (x') (a b)(x)
 - $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$
- scaling formula

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \alpha x \\ \beta y \end{pmatrix} \text{ (possibly with } \alpha = \beta \text{)}$$

• scaling as matrix multiplication $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \alpha & o \\ o & \beta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

Translation using 2D Matrix

• general matrix multiplication format

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

• tanslation formula $\binom{x'}{y'} = \binom{x}{y} + \binom{dx}{dy}$

• translation as matrix multiplication $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$ not possible in 2×2 matrix! \otimes

Solution: Homogeneous Coordinates

- add an additional dimension to our vector space Aⁿ: $n \rightarrow n+1$
- $(x, y)^T$ represented as $(wx, wy, w)^T$, $w \neq 0$
- normalized using $w = 1 \rightarrow (x, y, 1)^T$
- each point in Aⁿ is equivalent to a line in homogeneous space Aⁿ⁺¹ that originates in the origin o but without including o
- homogeneous coordinates are not to be confused with "regular" 3D coordinates!

Solution: Homogeneous Coordinates

- advantages of homogeneous coordinates
 - uniform treatment of transformations
 - all transformations can be represented
 - combined transformations as one matrix
- procedure: matrix-vector multiplication

$$\begin{pmatrix} x' \\ y' \\ w' \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} x \\ y \\ w \end{pmatrix}$$

• goal: derive transformation matrices

Translation in Homogeneous Coords

• general matrix multiplication format

$$\begin{pmatrix} x' \\ y' \\ w' \end{pmatrix} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} x \\ y \\ w \end{pmatrix}$$

• translation formula

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} dx \\ dy \end{pmatrix}$$

• translation as matrix multiplication

$$\begin{pmatrix} 1 & 0 & dx \\ 0 & 1 & dy \\ 0 & 0 & 1 \end{pmatrix} \implies \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & dx \\ 0 & 1 & dy \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Scaling in Homogeneous Coords

scaling as matrix multiplication

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \alpha & o \\ o & \beta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

• scaling as homogeneous matrix multiplication

$$\begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & 1 \end{pmatrix} \implies \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Rotation in Homogeneous Coords

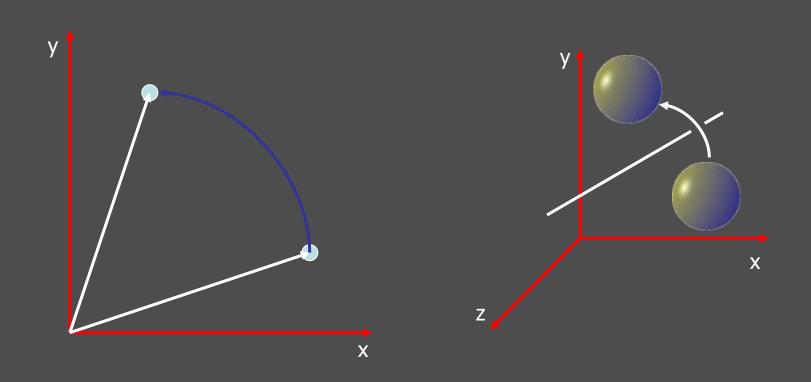
rotation as matrix multiplication

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

• rotation as homogeneous matrix multiplication

$$\begin{pmatrix} \cos\alpha & -\sin\alpha & o \\ \sin\alpha & \cos\alpha & o \\ o & 0 & 1 \end{pmatrix} \Rightarrow \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos\alpha & -\sin\alpha & o \\ \sin\alpha & \cos\alpha & o \\ o & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Transformations in 3D Space



Geometric Transformations in 3D

- same approach as in 2D
- also use homogeneous coordinates (for the same reasons)
- vectors/points from 3D to 4D

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

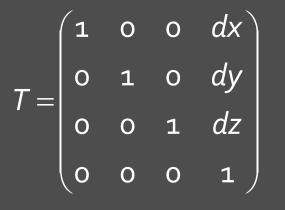
 transformation matrices are now 4×4 (instead of 3×3)

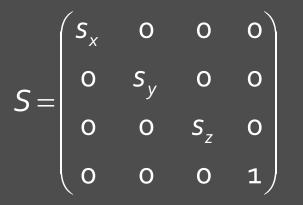
Transformation Matrices in 3D

- translation
 - translation vector
 (dx, dy, dz)^T
- scaling
 - for uniform scaling

 $s_x = s_y = s_z$

- otherwise individual factors may differ
- mirroring using factors of -1 and 1 depending on the mirror plane





Transformation Matrices in 3D

- rotation
 - rotation around 3 axes possible now
 - each has individual rotation matrix
 - rotation around positive angles in right-handed coordinate system
 - rotation axis stays unit vector in matrix

$R_x =$	(1	0		0		0	
	0	0 COS <i>a</i>		α —sin		0	
	0	o sin <i>c</i>		$cos \alpha$		0	
	0	0		0		1)	
$R_y =$		$DS\alpha$	0	sin	α	0	
	0		1	C	0		
	— S	$\sin lpha$	0	COS	5α	0	
		0	0	С)	1)	
$R_z =$	со	sα	—si	nα	0	0	
	sir	ו $lpha$	CO	sα	0	0	
	(C	C)	1	0	
	0		Ο		0	1)	

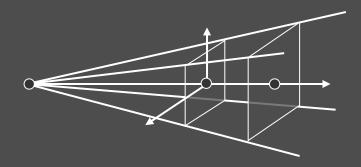
Transformations: Summary

- geometric transformations: linear mapping from \Re^n to \Re^n
- we are interested in $\mathfrak{R}^2 \to \mathfrak{R}^2$ and $\mathfrak{R}^3 \to \mathfrak{R}^3$
- transformations most relevant for CG:
 - translation
 - rotation
 - scaling
 - mirroring
 - shearing

Transformations: Summary

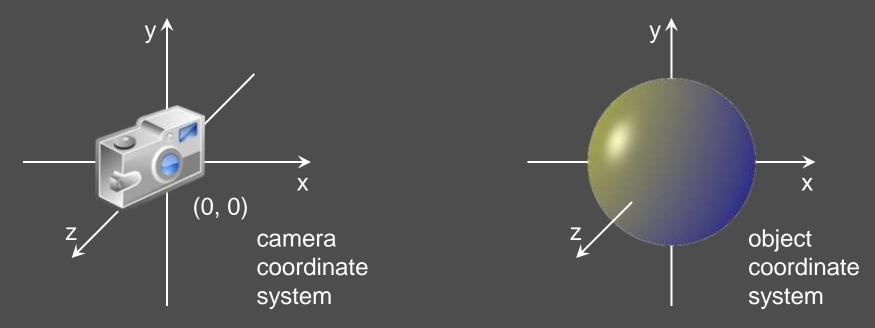
- unified representation of geometric transformations as matrices in homogeneous coordinates
- concatenation of transformation by multiplying the respective matrices
- order matters: for **column** vectors the **first** transformation comes **last** in the sequence
- concatenated transformations can be pre-computed (saving run-time)

Viewing and Projections



Model-View Transformation

transformation **directly** into camera coordinates:
 → object-dependent transformations



each object has its own model-view matrixhierarchies possible, objects reusable

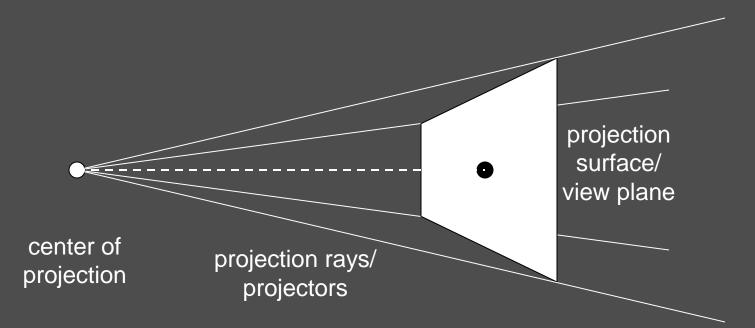
Model-View Transformation

- model-view transformation steps:
 - 1. translate object origin to camera location
 - 2. rotate to align coordinate axes
 - 3. possibly also scaling
- this process is used in OpenGL: no explicit world coordinates!
- object & camera locations and orientations may be specified in a world coordinate system (e.g., in modeling systems)

Projections

planar projection:

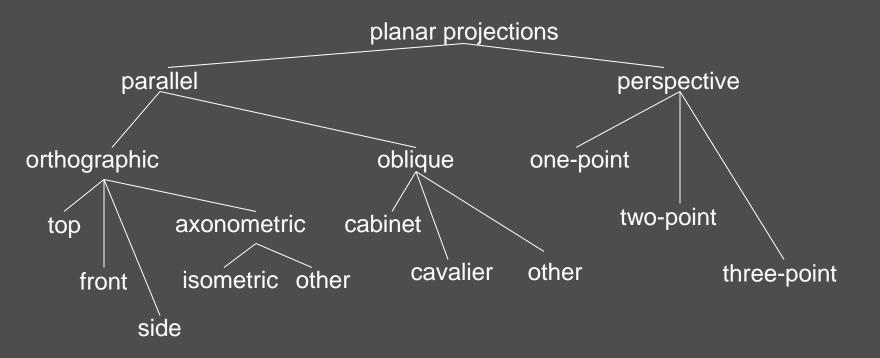
- projection rays are straight lines
- projection surface/view plane is planar
- projections of straight lines are also straight



Introduction – Terms

- parallel projection: characterized by direction of projection (dop)
- perspective projection:
 center of projection (cop)
- projection on view plane
- vector perpendicular to view plane:
 view plane normal (vpn)
- rays characterizing projection:
 projectors (parallel or diverging from cop)

Classification of Planar Projections



- parallel projections: all projectors parallel to each other
- perspective projections: projectors diverge from cop

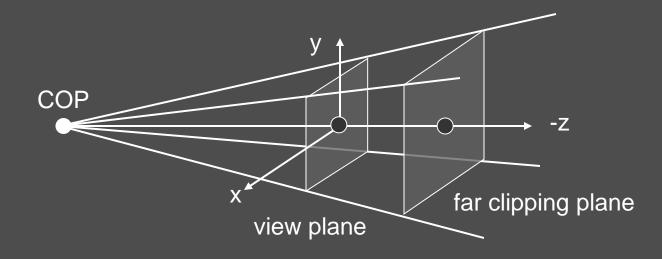
A Brief Refreshing Course on Computer Graphics

Perspective Projections: Camera Model

- inspired by real cameras
- parameters:
 - position, orientation
 - aperture
 - shutter time
 - focal length, type of lens (zoom vs. wide)
 - depth of field
 - size of resulting image
 - aspect ratio (4:3, 16:9, 1.85:1, 2.35:1, 2.39:1)
 - resolution (digital cameras)

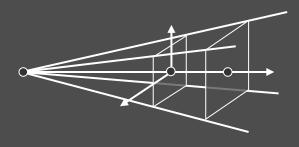
Perspective Projections: Camera Model

- simplified model in CG
 - position: point in 3D (= cop)
 - view direction: vector in 3D (vpn)
 - image specification: viewport
 - clipping planes for cutting off near and far objects (near and far clipping plane)

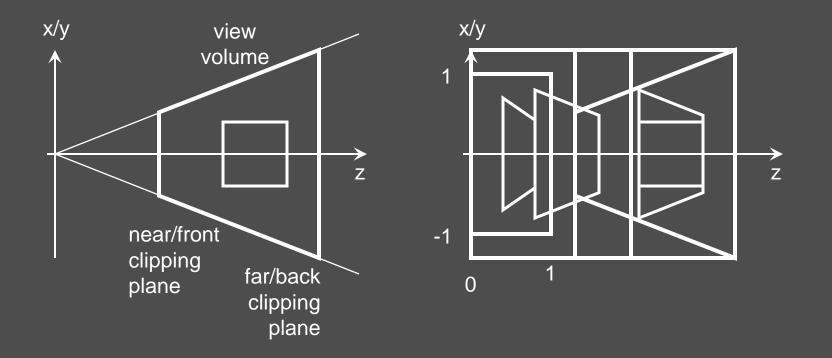


Perspective Projections: Camera Model

- differences between real and CG camera?
 - position of view plane w.r.t. COP
 - orientation of the image
 - type of camera (pinhole vs. lens)
 - type of "refraction"
 - lens effects (lens flare)
 - depth of field: none vs. existing
 - types of possible projections
 - picture taking times: 0 vs. >0
 - existence of far clipping plane
 - shape of view volume

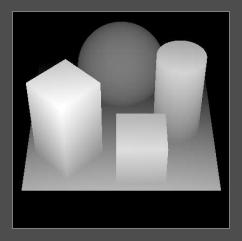


Projections: Canonical View Volumes



- shearing, translation, scaling
- view volume is only implicitly transformed: included objects are actually transformed!

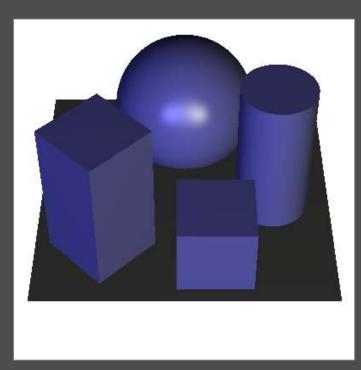
Hidden Surface Removal

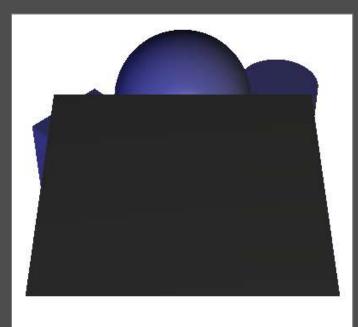


Tobias Isenberg

Hidden Surface Removal: Motivation

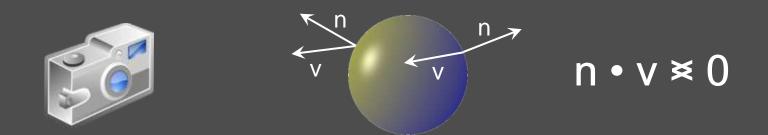
- goals:
 - model parts independently processed
 - at the same time: show front parts only
 - avoid unnecessary processing





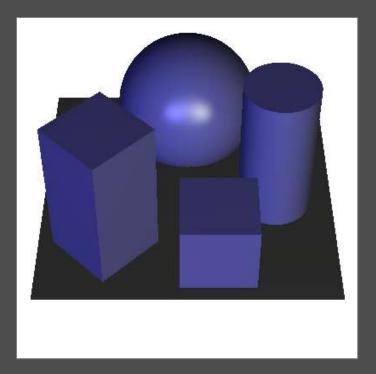
Back Face Culling

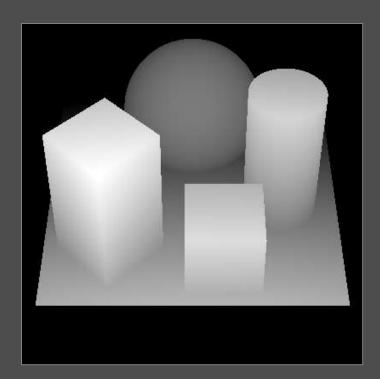
- back faces (usually) not visible
- remove these: reduction of computation
- removal early in the pipeline
- reduction of polygon count by approx.
 1/2 of the total polygon number
- computation: compare dot product of surface normal with view direction with 0



- idea:
 - rendering from back to front (Painter's algorithm)
 - avoid need to sort & problems with cyclic triangles
- realization by
 - trading speed for memory usage (memory is cheap [now anyway], time is not)
 - trading speed for accuracy (only compute what we really need/want)

- introduce new pixel buffer: z-buffer
 (in addition to the frame buffer for image)
- *z*-buffer stores *z*-values of pixels



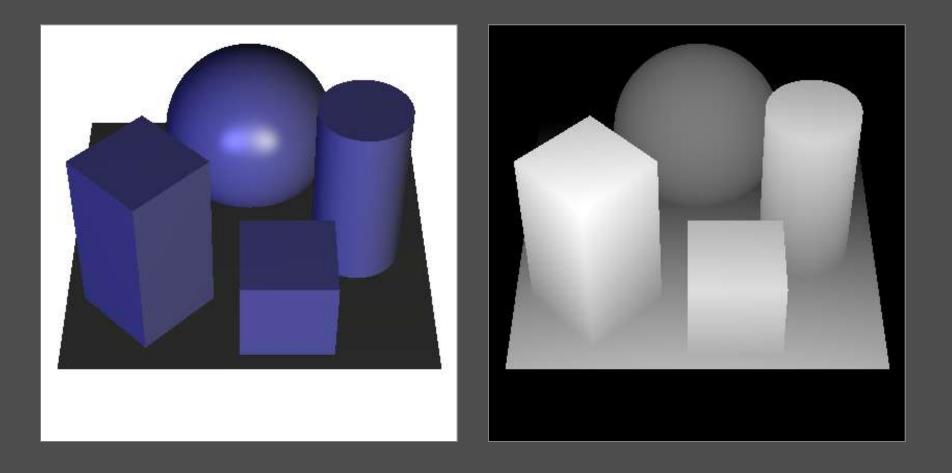


- treat each primitive (triangle) individually:
 scene → objects → triangles → pixels
- use z-buffer data to determine if a new triangle is (partially) hidden or not
- at each time, the part of scene that has been processed thus far is correctly displayed

z-Buffering: Algorithm

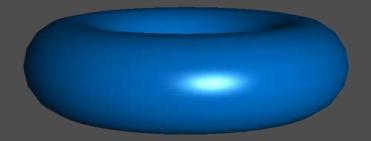
- initialize *z*-buffer and frame buffer
- for each triangle
 - project all vertices of the triangle
 - interpolate z-values for each pixel (scan line)
 - before shading a pixel, test
 if its *z*-value is closer to camera (i.e. higher)
 than the current *z*-buffer value
 - if so: update z-buffer value and shade pixel
 - otherwise: discard pixel and continue
- after scene processing z-buffer contains depth map of scene

z-Buffering: Example (by object)



- advantages
 - can be implemented in hardware
 - can process infinitely many primitives
 - does not need sorting of primitives
 (only need to know distance to camera)
 - can handle cyclic and penetrating triangles
- disadvantages
 - needs memory to keep all *z*-values (image size @ 8bit or 16bit)
 - cannot handle transparency properly

Illumination and Shading

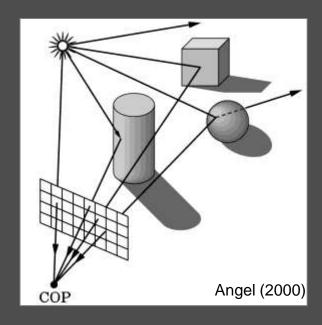


Tobias Isenberg

Illumination Models

- real world:
 - surfaces emit, absorb, reflect, and scatter light

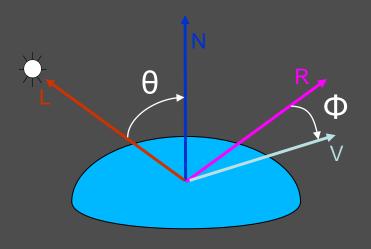
- light intensity and color dependent on surface position and orientation w.r.t. the light source
- light is usually reflected or refracted several times
- usually several sources of light
- final intensity/color at a point is sum of several light paths ending at that point



Illumination Models

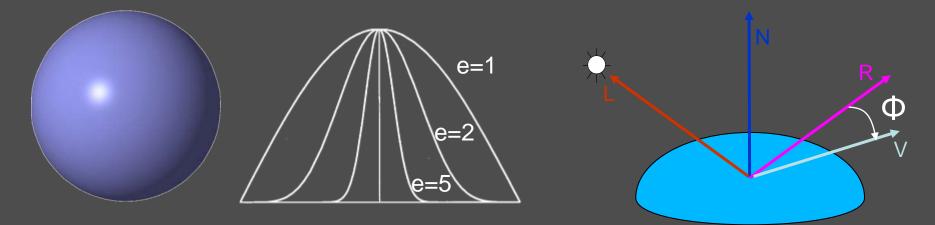
- computer graphics world:
 - mathematical description necessary
 - leads to equation using integrals: the *rendering equation*
 - it's usually not solvable
 - we need approximation!
 - simplifying light sources
 - simplifying materials
 - simplifying computation
 - speed-up

- angle θ between L & N determines diffuse reflection
- reflection angle equals θ
- angle Φ between R & V determines perceived brightness
- maximal reflection if $R = V (\Phi = 0)$

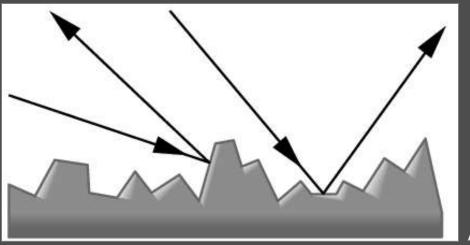


- L vector to light source
 - i surface normal vector
- R reflected light ray
- / vector to viewer/observer

- directed reflection: reflection only for small Φ: smooth surfaces
- light attenuation depending on angle Φ : shininess
- modeled using cosine function and exponent: I \sim cos ($\Phi)^{\rm e}~$ (e.g., metals: e $\approx 100)$
- physical reality: anisotropic materials

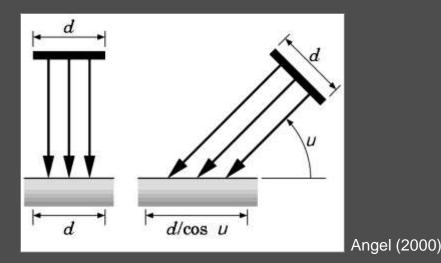


- diffuse reflection: equal reflection in all directions on rough surfaces, depends only on θ and not observer – examples?
- due to light scattering on rough surfaces on randomly oriented microscopic facets

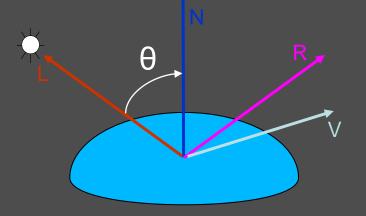


Angel (2000)

- diffuse reflection modeled according to Lambert's law by cosine function:
 - $I \sim \cos \theta = L \bullet N$ for normalized L, N



because light distributes over larger area

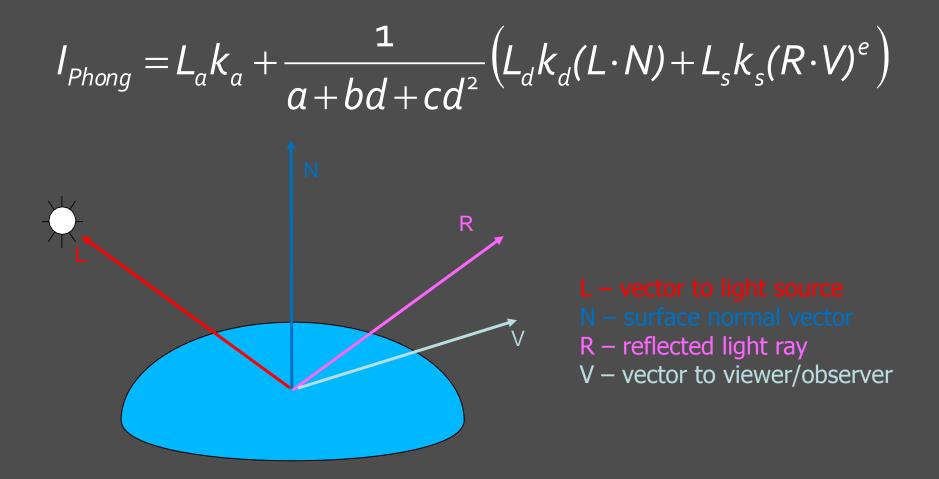


$\theta = 0^{\circ} \rightarrow max.$ intensity $\theta = 90^{\circ} \rightarrow 0$ intensity

Phong Illumination Model (1973)

- most common CG model for illumination (by Bùi Tường Phong): $I_{Phong} = I_a + I_d + I_s$
- ambient light: base illumination of scene
 - simulates light scattering on objects
 - necessary because repeated diffuse reflection is not considered in local illumination model
 - depends on color of all objects in scene
 - should always be kept very small
- diffuse light: light from diffuse reflection
- specular light: light from directed reflection

Phong Illumination Model



has to be evaluated for all light sources and for each of the base colors

Shading of Polygonal Models

- *status:* we can approximate color at a point
- *goal:* we want to render the whole model
- *constraint:* efficiency and quality
- *approach:* **shade** all pixels of a triangle based on color computation at a few points
- three techniques:
 - flat shading
 - Gouraud shading
 - Phong shading (≠ Phong illumination)

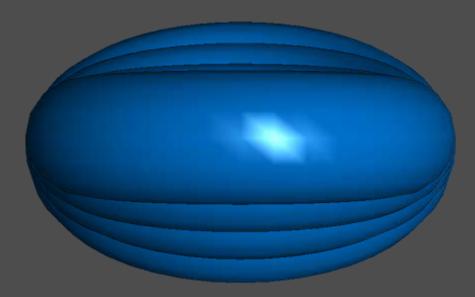
Flat Shading

- no interpolation
- all pixels same color
- two methods:
 - one point per triangle/quad
 - average of triangle's/quad's vertices

- low quality: single primitives easily visible
- fast computation & easy implementation

Gouraud Shading (1971)

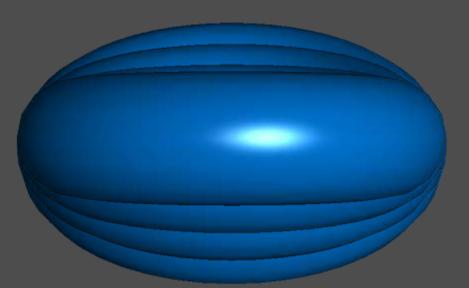
- computation of colors at all vertices
- linear interpolation of colors over primitive
- more computation but better quality than flat shading



- usually implemented in graphics hardware
- highlights problematic: highlight shapes and highlights in the middle of triangles

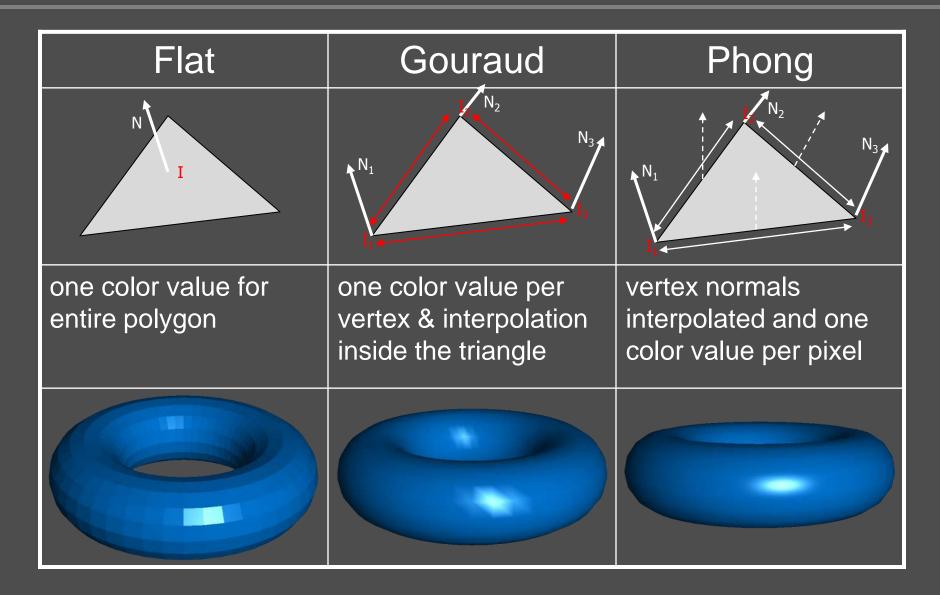
Phong Shading (1973)

- linear interpolation of normals for each pixel
- color computation for each pixel separately
- best quality, highlights are shown correctly



- but computationally more expensive
- problems:
 - polygons still visible at silhouettes
 - traditionally not implemented in hardware (nowadays not a problem with shaders)

Polygonal Shading: Comparison



Tobias Isenberg

Texture Mapping

Texture Mapping Motivation

- so far: detail through polygons & materials
- example: brick wall
- problem: many polygons
 & materials needed
 for detailed structures
 → inefficient for memory ar

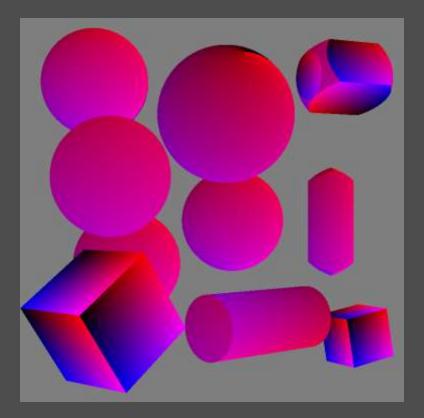
- \rightarrow inefficient for memory and processing
- new approach necessary: texture mapping
- introduced by Ed Catmull (1974), extended by Jim Blinn (1976)

Texture Mapping Motivation

- several properties can be modified
 - color: diffuse component of surface
 - reflection: specular component of surface to simulate reflection (environment mapping)
 - normal vector: simulate 3D surface structure (bump mapping)
 - actual surface: raise/lower points to actually modify surface (displacement mapping)
 - transparency: make parts of a surface entirely or to a certain degree transparent

Inherent Texture Coordinates

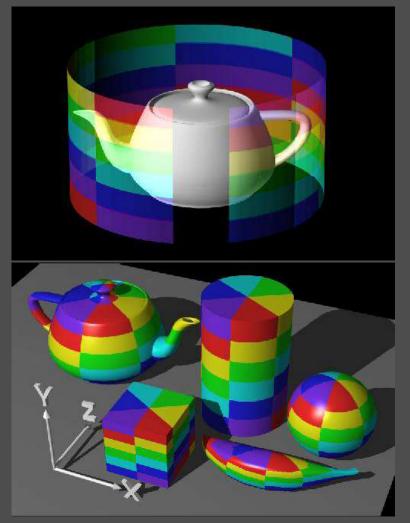
- (*u*, *v*) coordinates derived from parameter directions of surface patches (e.g., Bézier and spline patches)
- obvious (*u*, *v*) coordinates derived for primitive shapes (e.g., boxes, spheres, cones, cylinders, etc.)



2-Step Cylindrical Mapping

• mapping onto cylinder surface given by height h_0 and angle θ_0

• discontinuity along one line parallel to center axis



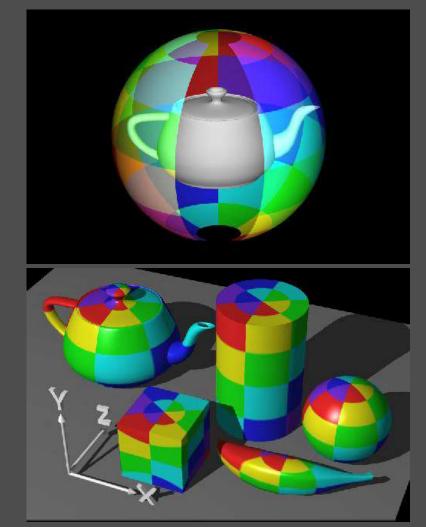
from R. Wolfe: Teaching Texture Mapping

Tobias Isenberg

2-Step Spherical Mapping

 mapping onto surface of a sphere given by spherical coordinates

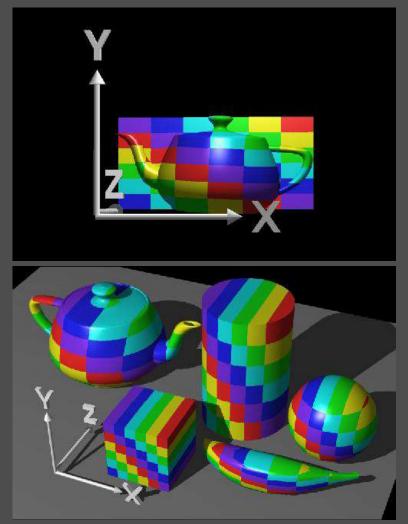
 no non-distorting mapping possible between plane and sphere surface



from R. Wolfe: Teaching Texture Mapping

2-Step Planar Mapping

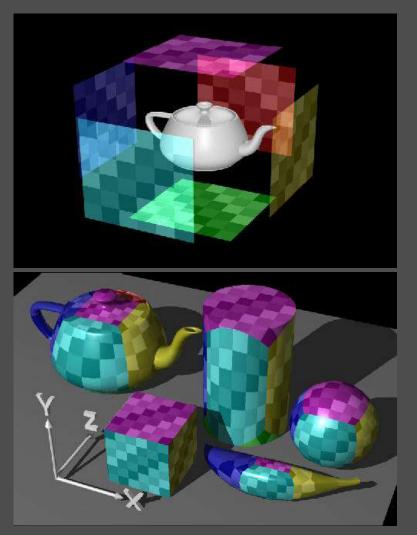
 mapping onto planar surface given by position vector and two additional vector



from R. Wolfe: Teaching Texture Mapping

2-Step Box Mapping

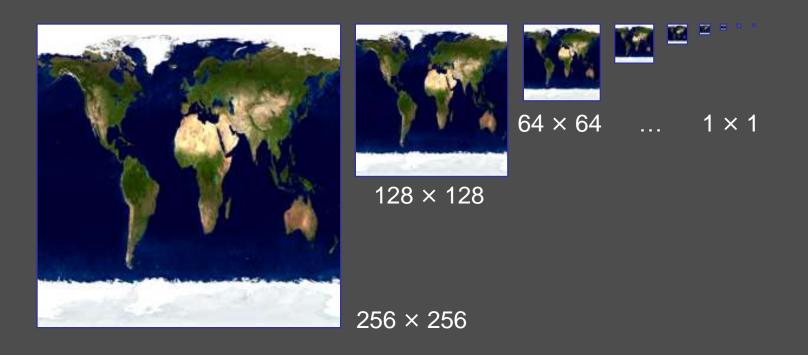
- enclosing box is usually axis-parallel bounding box of object
- six rectangles onto which the texture is mapped
- similar to planar mapping



from R. Wolfe: Teaching Texture Mapping

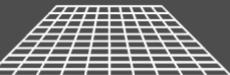
Texture Mapping: Mip Mapping

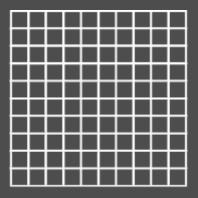
- optimal texture mapping (speed & quality): texel size ≈ pixel size
- idea: use stack of textures and select the most appropriate one w.r.t. situation



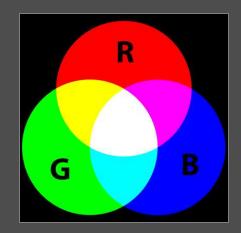
Texture Mapping: Anisotropic Filtering

- large textures not perpendicular to viewing direction: blurring problems w.r.t. angle
- appropriate mip map selection not possible
- generate mip maps favoring one direction: 256×128, 256×64, 128×64, 128×32, ...





Color and Color Models



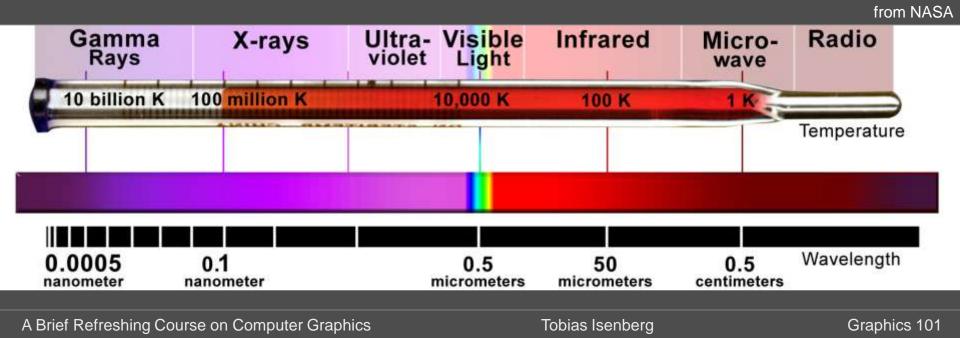
What is color?

• let's find out ...

What is color?

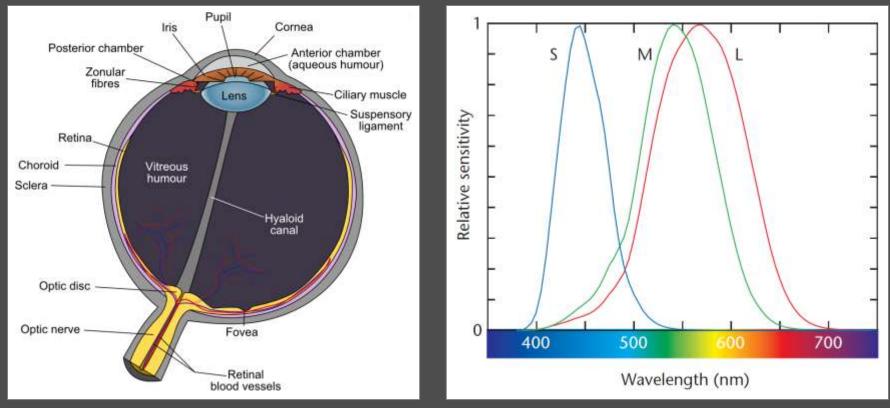
What is Color?

- color is a human reaction to light (change) (can also be influenced by cultural background)
- what is light?
- light is the visible part (370–730nm) of the electromagnetic spectrum



Human Color Perception

light is converted into signals by cone cells
three cone types with different sensitivities

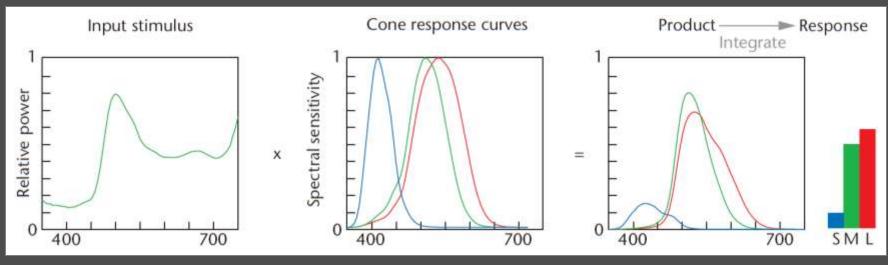


Stone 2005

A Brief Refreshing Course on Computer Graphics

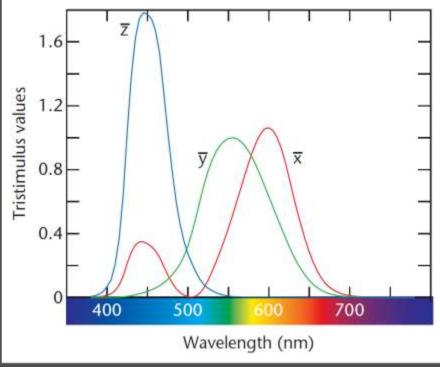
Human Color Perception

- colored light = spectral distribution function: light intensity as function of wavelength
- converted into 3 response values by cones (short, medium, and long wavelengths)



Describing Color Vision: XYZ Color Model

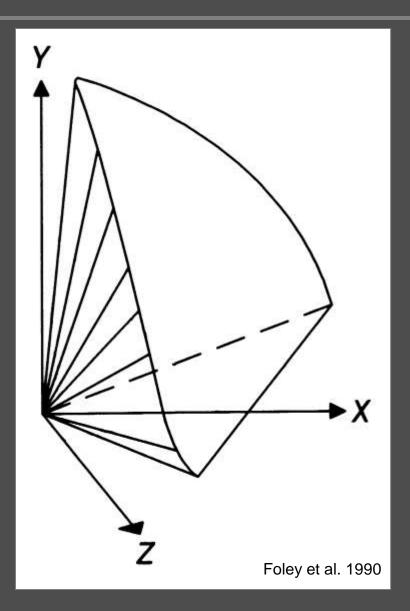
- definition of three primary colors: X, Y, Z
 - color-matching functions are non-negative
 - Y follows the standard human response
 - to luminance, i.e., the Y value represents perceived brightness
 - can represent all perceivable colors
- mathematically derived from experiments



XYZ CIE Color Space

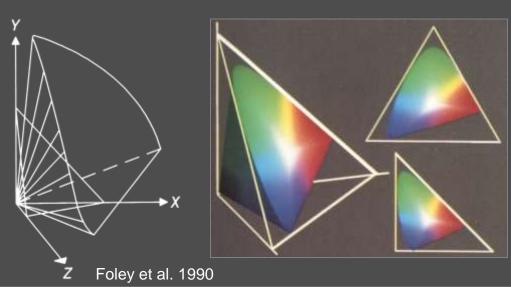
• plotting XYZ space in 3D

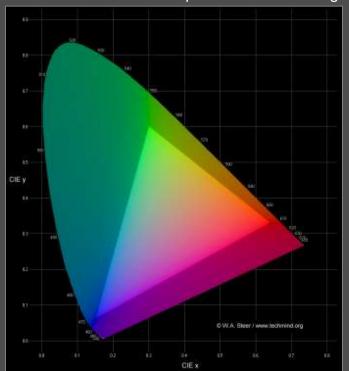
- all colors that are perceivable by humans form a deformed cone
- *X*, *Y*, and *Z*-axes are outside this cone



CIE Chromaticity Diagram

- projection of XYZ space onto X+Y+Z = 1 (to factor out a color's brightness):
 x = X/(X+Y+Z) y = Y/(X+Y+Z)
- monochromatic colors on upper edge
- color gamut: colors visible on a device through color adding





http://www.techmind.org/

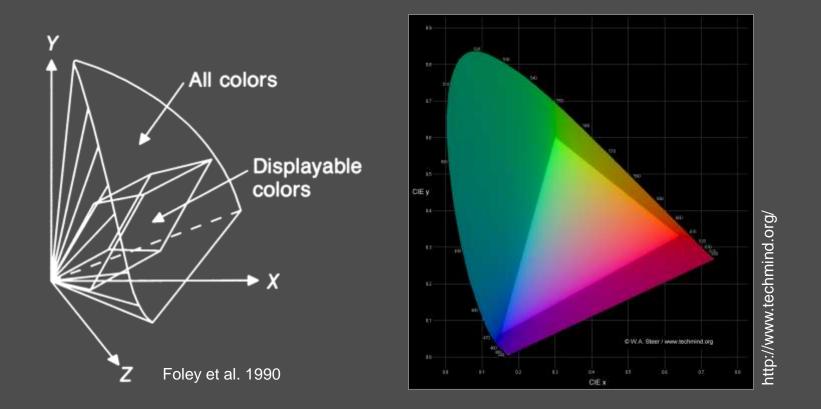
A Brief Refreshing Course on Computer Graphics

Tobias Isenberg

Graphics 101

Can RGB Represent Any Color?

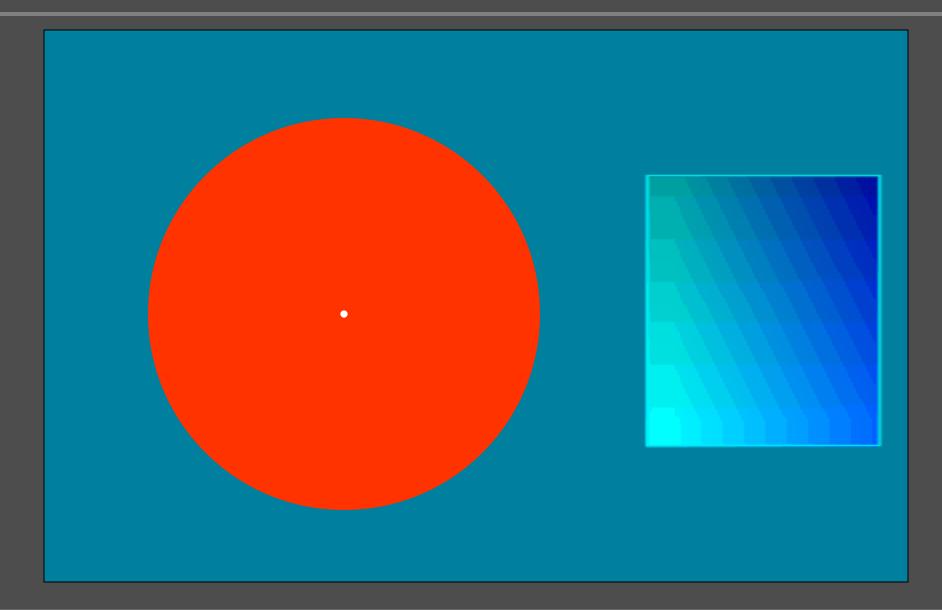
• no, because all colors form horseshoe shape in CIE chromaticity diagram and RGB gamut is triangular



Can RGB Represent Any Color?

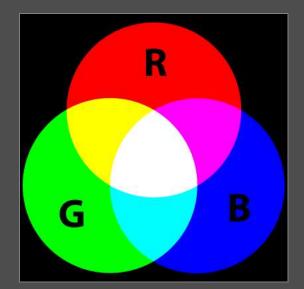
- "But my shiny new LCD monitor is state-of-the-art, it can surely show all colors!"
- \rightarrow Let's see a color that it cannot show ...
- another experiment, same proceedings as before
- look at the dot and continue staring at it

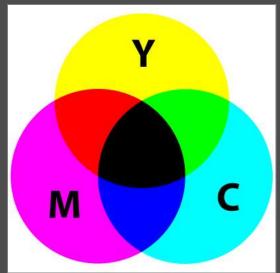
Let's see REAL cyan ...



Additive vs. Subtractive Color

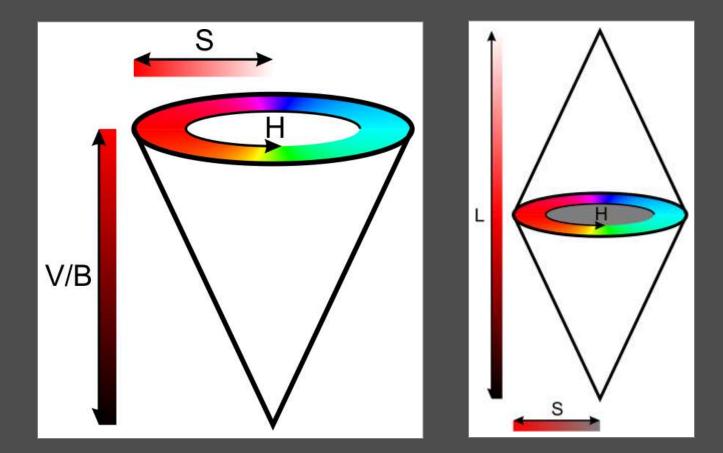
- (physical) color mixing depends on color production process
- device-dependent color models
 - light emission:
 additive mixing
 (CRTs etc.): RGB model
 - light absorption:
 subtractive mixing
 (printing process):
 CMY(K) model





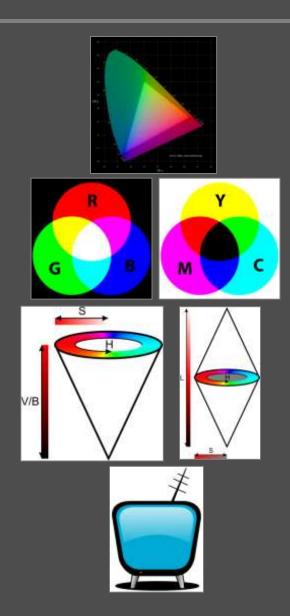
HSV/HSB and HSL/HLS Color Models

- human's inefficient with device models
- perceptual models to ease color specification



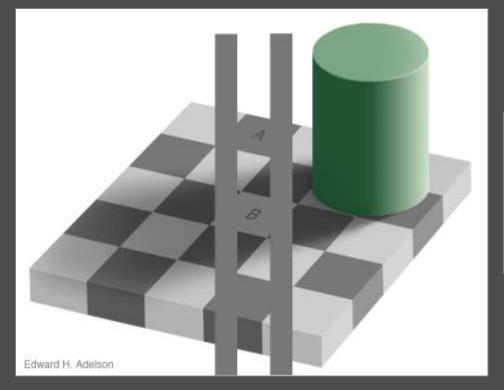
Color Models Summary

- human vision-oriented
 CIE XYZ & LMS
- hardware-oriented
 RGB & CMY(K)
- perceptual models
 HSV/HSB & HSL/HLS
- other models (e.g., for TV)
 YIQ (NTSC) & YUV (PAL)



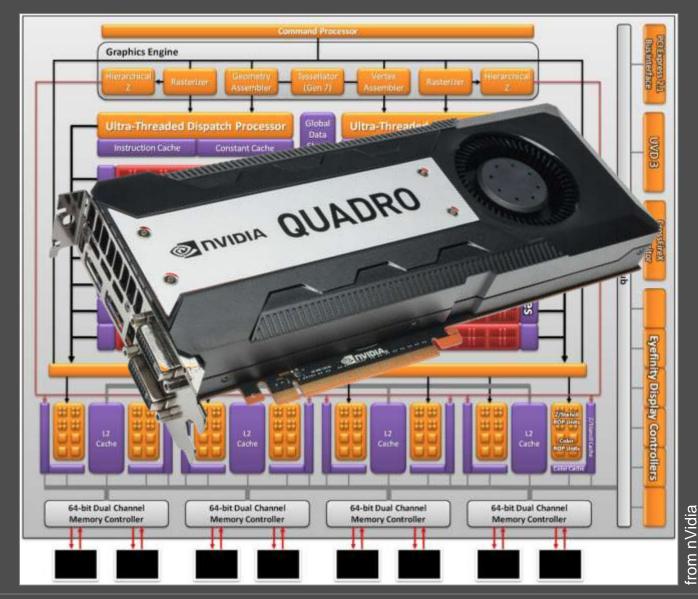
Other Color Topics

color perception depending on context color deficiency



Hardware Rendering

Why is graphics hardware effective?

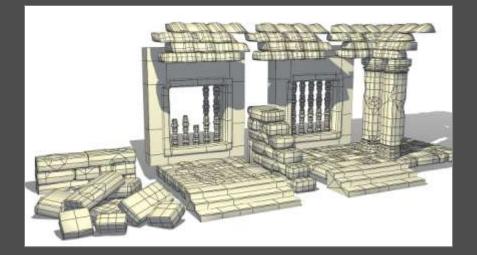


A Brief Refreshing Course on Computer Graphics

Tobias Isenberg

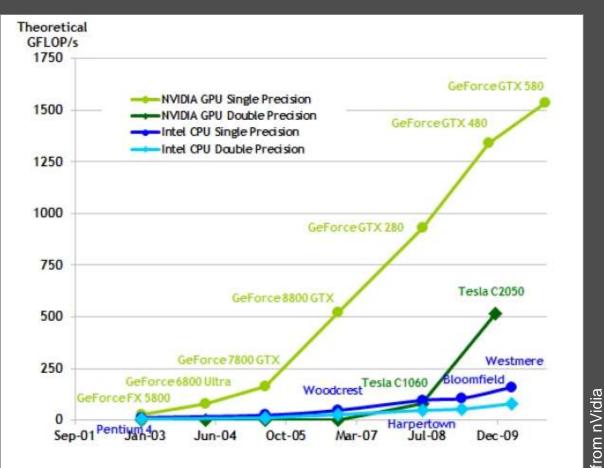
Why is graphics hardware effective?

- 3D rendering can be easily parallelized:
 - mesh: thousands of vertices; for each vertex we:
 - transform: object space \rightarrow eye space \rightarrow screen space
 - illuminate (compute vectors, attenuation, etc.)
 - shade (Gouraud per-vertex shading)
 - various other tasks ...
 - mega-pixel images; for each pixel we:
 - shade (Phong per-pixel shading)
 - perform texture mapping
 - perform blending
 - various other tasks ...



Why is graphics hardware effective?

• GPU throughput is increasing at a much faster rate than CPU throughput.

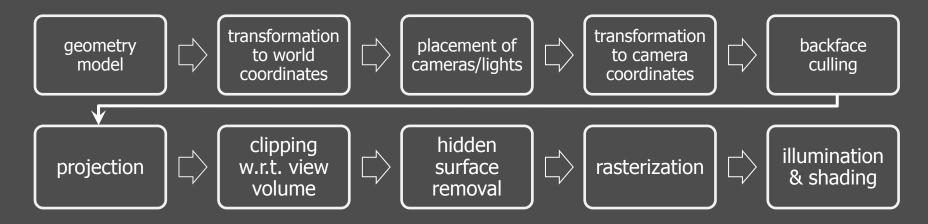


A Brief Refreshing Course on Computer Graphics

Tobias Isenberg

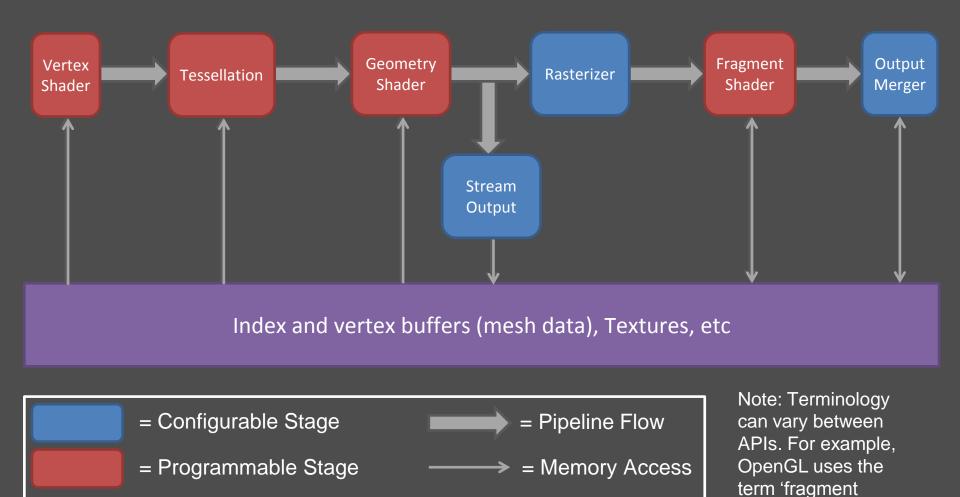
The graphics hardware pipeline

• traditional graphics pipeline:



• transition to the programmable modern graphics hardware pipeline ...

The Modern Graphics Hardware Pipeline



= Memory Resource

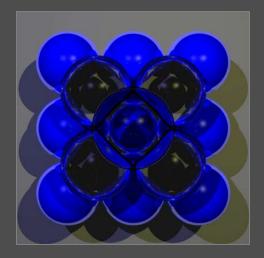
Tobias Isenberg

shader' while

Direct3D uses the term 'pixel shader'.

A Brief Refreshing Course on Computer Graphics

Local vs. Global Illumination



Global Illumination: Introduction

- so far: only one interaction between light (from light source) and surface considered
 → local illumination models
- now: model several steps of reflection
 → global illumination models
- two techniques: raytracing & radiosity

A Brief Refreshing Course on Computer Graphics

Raytracing

- solving of the rendering equation through Monte Carlo integration, i.e., through repeated (random) sampling
- sampling for each pixel of output image:

$$\underbrace{L_{o}(x,\vec{\omega}')}_{q} = \underbrace{L_{e}(x,\vec{\omega}')}_{q} + \int_{\Omega} \underbrace{f_{r}(x,\vec{\omega},\vec{\omega}')(\vec{\omega}\cdot\vec{n})}_{q} \underbrace{L_{i}(x,\vec{\omega})}_{q} d\vec{\omega}$$

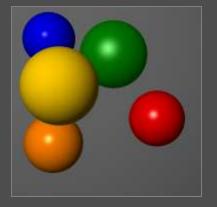
pixelemitted light of (first)colorintersection point

illumination model (e.g., Phong model) light from light sources plus reflection plus refraction rays

further approximations needed: rei
 → recursion for specular light rays only

Raycasting

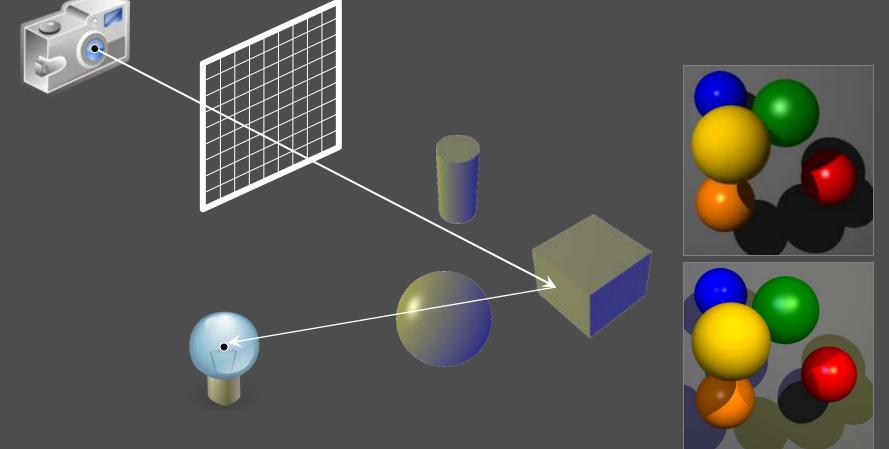
 shoot rays; for each intersection compute the local illumination (e.g., using the Phong model)



Tobias Isenberg

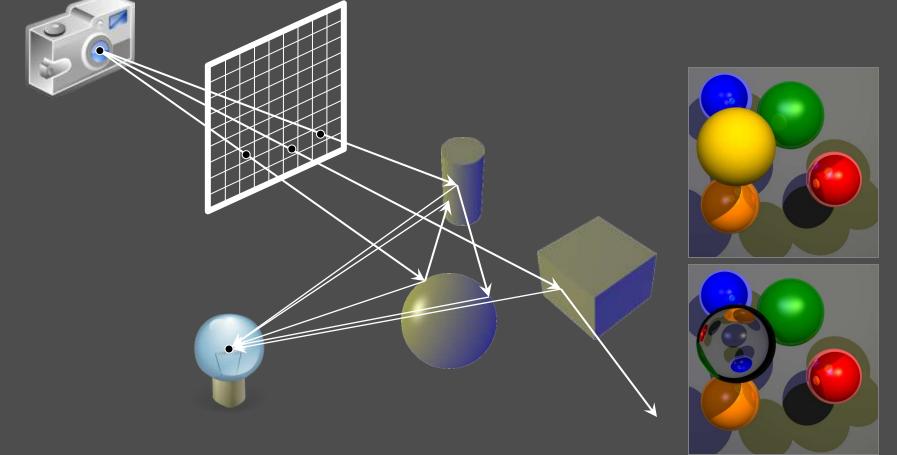
Generating Shadows

 shadow rays to test intersections between point and light source



True Raytracing (Recursion)

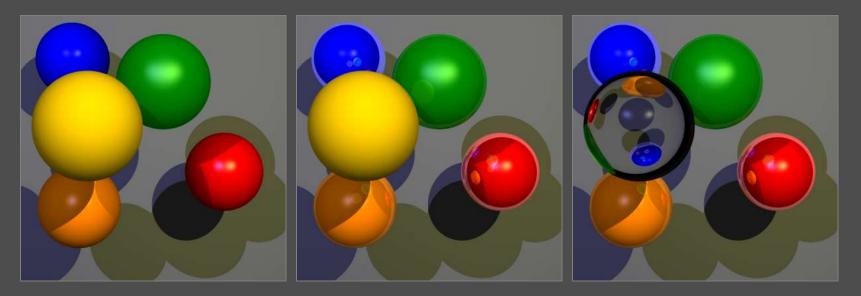
 recursion: also follow reflected rays and refracted rays



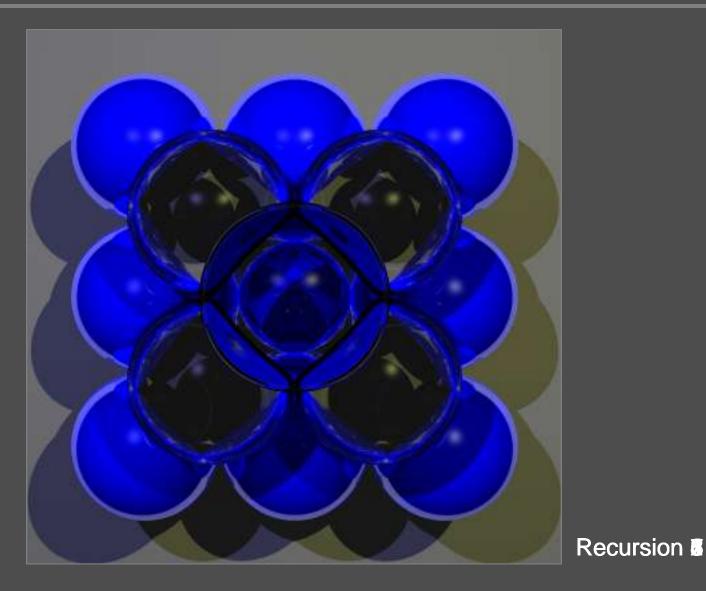
Adapted Illumination Model

 enhance the Phong model with terms for reflected (I_r) and refracted portion (I_t) (model by Whitted):

$$I = k_a I_a + \sum_i \left(k_d I_{d_i} (L \cdot N) + k_s I_{s_i} (R \cdot V)^e \right) + I_r + I_t$$



Raytracing Recursion Steps



A Brief Refreshing Course on Computer Graphics

Tobias Isenberg

Properties of Raytracing

- models directed global reflections: mirroring effects, shadows (shadow rays)
- hidden surface removal included
- does not account for certain light effects
 - caustics (photon tracing)
 - aerial light sources
 - (repeated) indirect diffuse reflection
- computationally expensive, but highly parallelizable (CPU and GPU)

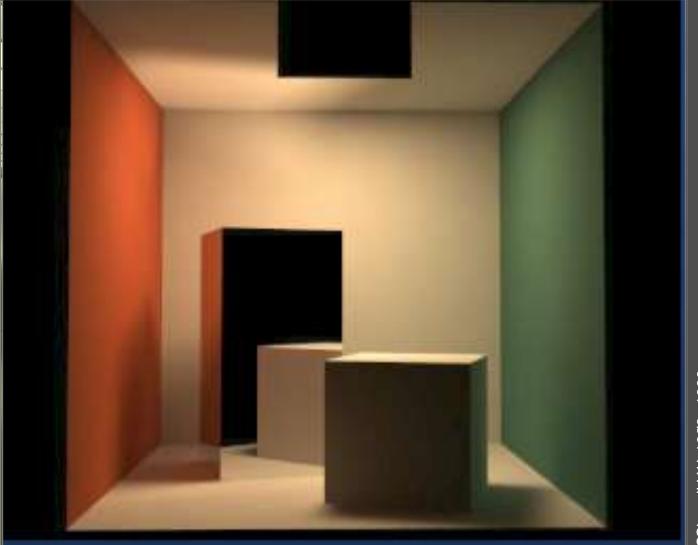
Radiosity

- up to now: repeated diffuse reflection difficult \rightarrow but this happens in reality!
- radiosity: technique to model this repeated diffuse reflection

Radiosity

- radiosity: rate at which energy leaves a surface
- let's consider just diffuse reflection for now
- general idea:
 - 1. sub-divide scene into many small parts
 - 2. determine light interactions between parts of the scene independent of viewing
 - 3. simulate the illumination situation
 - 4. render a specific view

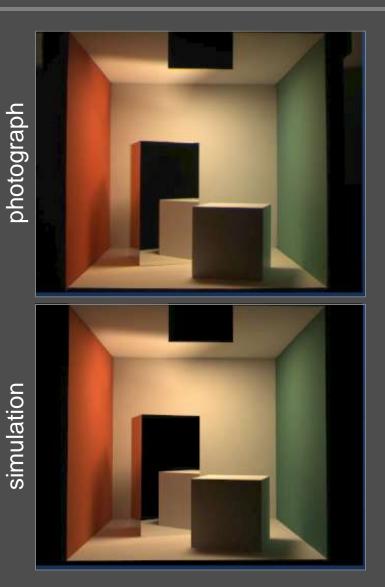
Radiosity: Examples



A Brief Refreshing Course on Computer Graphics

Tobias Isenberg

Radiosity: Quality



difference image

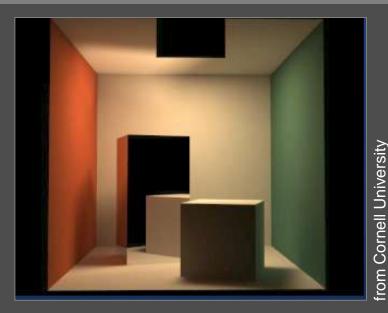
from Cornell University

A Brief Refreshing Course on Computer Graphics

Tobias Isenberg

Radiosity: Summary

- good representation of repeated diffuse reflection in a scene
- approximation of the rendering equation
- discretization and patches

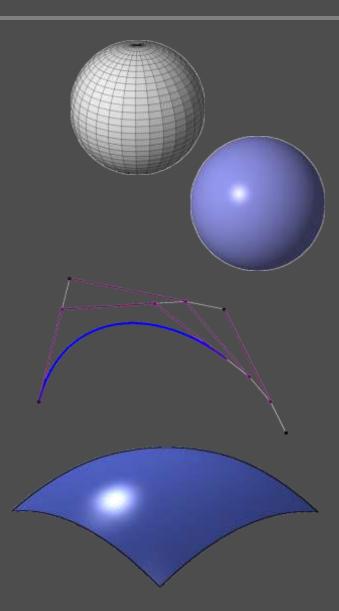


- very expensive due to huge matrix sizes
- different strategies to solve linear system
- only needs to be re-computed when scene changes, not for moving through the scene

Curves & Surfaces

Curves and Smooth Surfaces

- object representations so far
 - polygonal meshes (shading)
 - analytical descriptions (raytracing)
- flexibility vs. accuracy
- now: flexible yet accurate representations
 - piecewise smooth curves:
 Bézier curves, splines
 - smooth (freeform) surfaces
 - subdivision surfaces



Again, why do we need all this?

not only representation, but also modeling
and it's all about cars! shiny cars! ©

Specifying Curves

- functional descriptions
 - -y = f(x) in 2D; for 3D also z = f(x)
 - cannot have loops



- functions only return one scalar, bad for 3D
- difficult handling if it needs to be adapted
- parametric descriptions
 - independent scalar parameter t $\in \Re$
 - typically t \in [0, 1], mapping into \Re^2 / \Re^3
 - point on the curve: P(t) = (x(t), y(t), z(t))

Polynomial Parametric Curves

• use **control points** to specify curves

 \bigcirc

n control points for a curve segment
set of **basis** or **blending functions**:

$$P(t) = \sum_{i=0}^{n} P_{i}B_{i,n}(t)$$

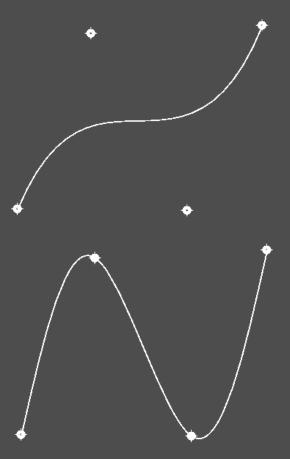
 \bigcirc

 \bigcirc

Interpolating vs. Approximating

- two different curves schemes: curves do not always go through all control points
 - approximating curves
 not all control
 points are on the
 resulting curve

interpolating curves
 all control points
 are on the resulting
 curve



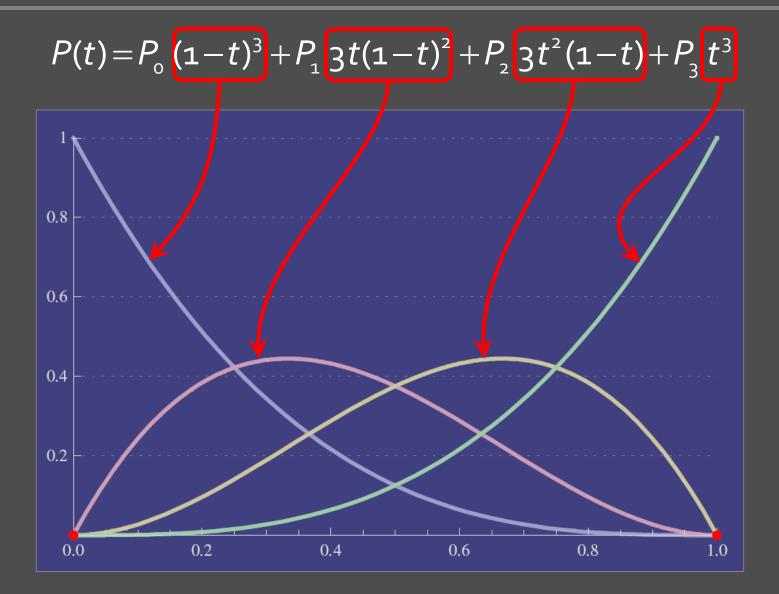
Bézier Curves: Blending Functions

- formulation of curve: $P(t) = \sum_{i=0}^{n} P_{i}B_{i,n}(t)$ B_{i,n} Bernstein polynomials (control point weights, depend on t): $B_{i,n}(t) = \binom{n}{i} t^{i} (1-t)^{n-i} = \frac{n!}{i! (n-i)!} t^{i} (1-t)^{n-i}$
- Bézier curve example for n = 3:

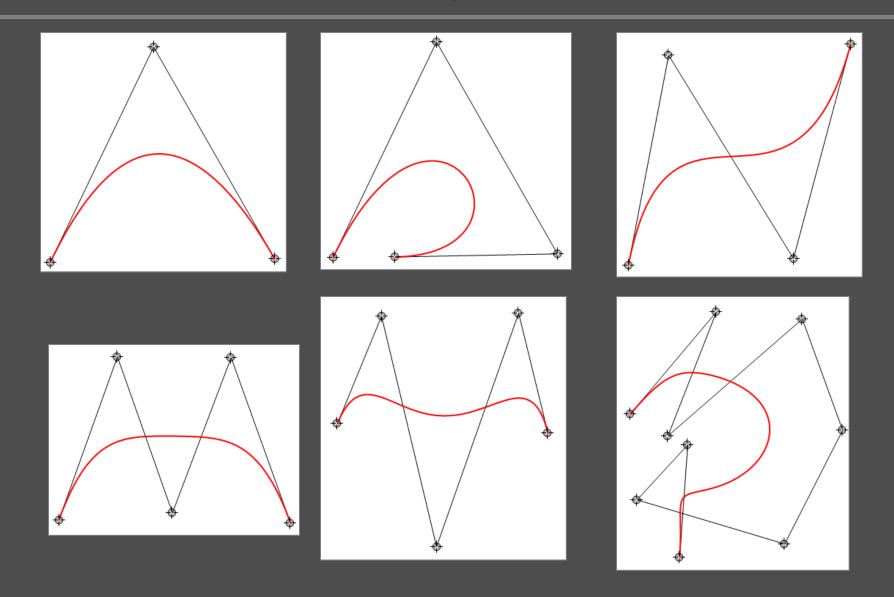
$$P(t) = P_0 B_{0,3}(t) + P_1 B_{1,3}(t) + P_2 B_{2,3}(t) + P_3 B_{3,3}(t)$$

= $P_0 (1-t)^3 + P_1 3t(1-t)^2 + P_2 3t^2(1-t) + P_3 t^3$

Bernstein Polynomials Visualized



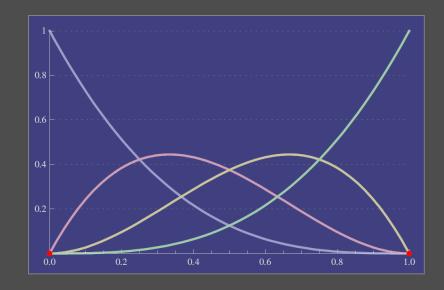
Bézier Curves: Examples



Bézier Curves: Properties

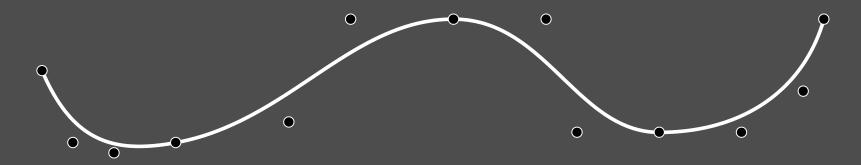
- curve always inside the **convex hull** of the control polygon
- approximating curve: only first & last control points are interpolated – why?
- each control point
 affects the entire curve,

 Iimited local control
 → problem for modeling



Piecewise Smooth Curves

- low order curves give sufficient control
- *idea*: connect segments together
 - each segment only affected by its own control points \rightarrow local control
 - make sure that segments connect smoothly

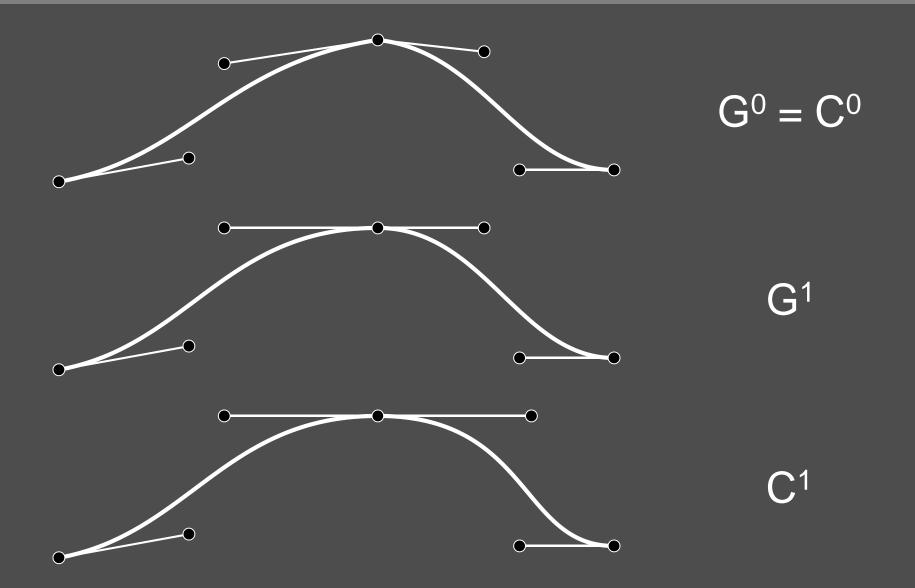


• *problem*: what are smooth connections?

Continuity Criteria

- a curve s is said to be Cⁿ-continuous if its nth derivative dⁿs/dtⁿ is continuous of value
 → parametric continuity: shape & speed
- not only for individual curves, but also and in particular for where segments connect
- geometric continuity: two curves are Gⁿcontinuous if they have proportional nth de-rivatives (same direction, speed can differ)
- Gⁿ follows from Cⁿ, but not the other way
- car bodies need at least G²-continuity

Continuity Criteria: Examples

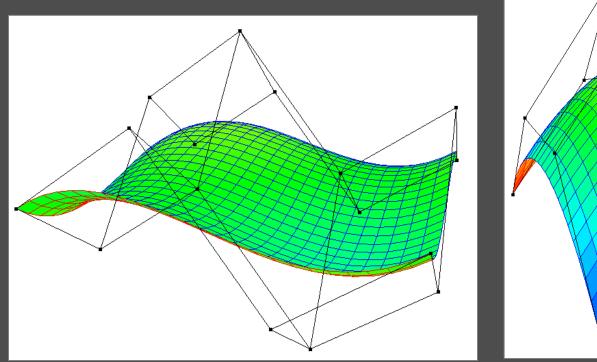


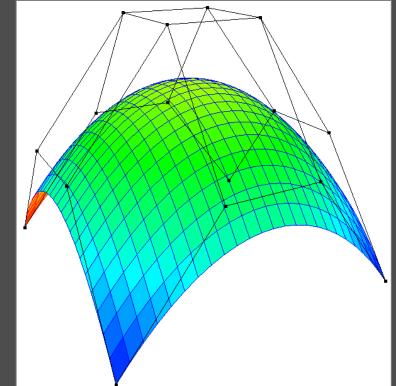
Freeform Surfaces

- base surfaces on parametric curves
- Bézier curves → Bézier surfaces/patches
- spline curves \rightarrow spline surfaces/patches
- mathematically: application of curve formulations along two parametric directions

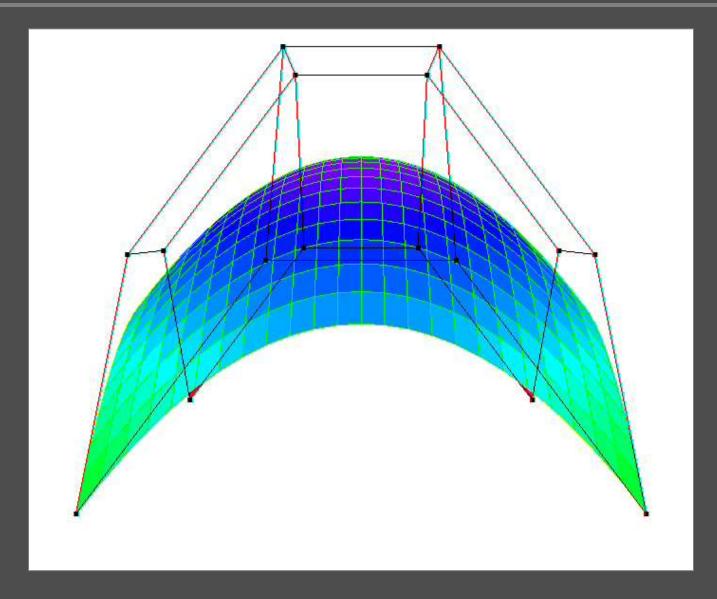
Freeform Surfaces: Principle

• Bézier surface: control mesh with m × n control points now specifies the surface:

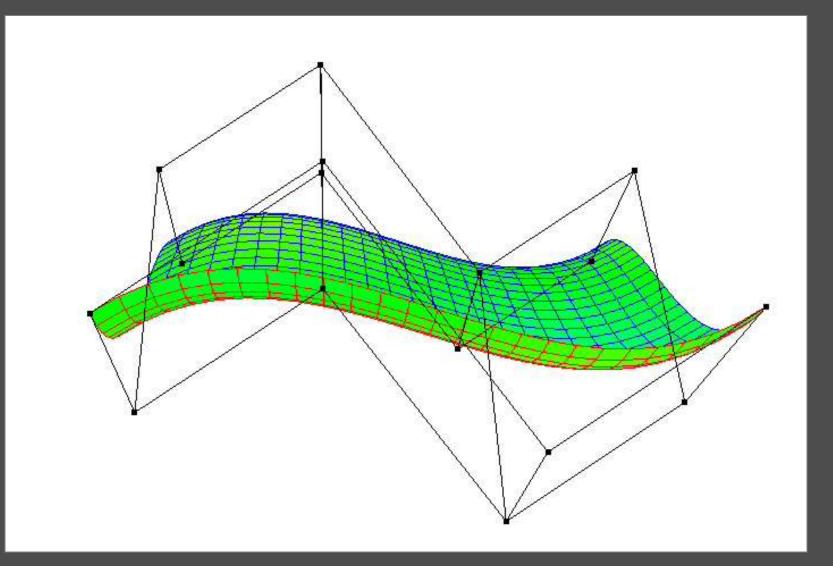




Freeform Surfaces: Examples



Freeform Surfaces: Examples



Subdivision Surfaces

- but we already have so many polygon models, is there anything we can do?
- sure there is: **subdivision surfaces**!
- basic idea:
 - model coarse, low-resolution mesh of object
 - recursively refine the mesh using rules
 - use high-resolution mesh for rendering
 - limit surface should have continuity properties and is typically one of the freeform surfaces

Subdivision Surfaces: Example

